Skip to main content
Log in

Assimilation of γ-butyrobetaine, and d-and l-carnitine by resting cell suspensions of Acinetobacter calcoaceticus and Pseudomonas putida

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The metabolic pattern of utilization of [1,2,3,4-14C, methyl-3H] γ-butyrobetaine and d-and l-[1-14C, methyl-3H]carnitine has been examined with variously grown resting cell suspensions of Acinetobacter calcoaceticus and Pseudomonas putida. Ps. putida grown on d, l-carnitine as the sole source of carbon, degraded only l-carnitine with stoichiometric accumulation of glycinebetaine. Alternatively, when grown on γ-butyrobetaine, Ps. putida rapidly metabolized γ-butyrobetaine, and to a lesser but significant extent, both d-and l-carnitine with equivalent formation of trimethylamine and degradation of the betaine carbon skeleton. Ac. calcoaceticus grown on either d,l-carnitine or γ-butyrobetaine, effectively utilized all three betaines at nearly the same rates. Disappearance of each of these quarternary ammonium compounds was accompanied by stoichiometric formation of trimethylamine and degradation of the carbon backbone. Utilization of the betaines and corresponding formation of trimethylamine by resting cell suspensions of appropriately grown Ac. calcoaceticus and Ps. putida, was essentially abolished under conditions of anaerobiosis and severely impaired in the presence of sodium cyanide, sodium azide, 2,4-dinitrophenol or 2,2′-bipyridine. The results of the present investigations with resting cell suspensions of both Ac. calcoaceticus and Ps. putida do not support an earlier suggestion that γ-butyrobetaine degradation in these organisms proceeds by its prior hydroxylation to l-carnitine. Indeed, disrupted cell-free preparations of Ac. calcoaceticus and Ps. putida grown on either d,l-carnitine or γ-butyrobetaine showed no detectable γ-butyrobetaine hydroxylase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott MT, Udenfriend S (1974) α-Ketoglutarate-coupled dioxygenases. In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic Press, New York, pp. 167–214

    Google Scholar 

  • Aurich H, Kleber, H-P, Schöpp W-D (1967) An inducible carnitine dehydrogenase from Pseudomonas aeruginosa. Biochim Biophys Acta 139:505–507

    Google Scholar 

  • Aurich H, Kleber H-P, Sorger H, Tauchert H (1968) Reinigung und Eigenschaften der Carnitindehydrogenase aus Pseudomonas aeruginosa. Eur J Biochem 6:196–201

    Google Scholar 

  • Aurich H, Rotzsch W, Strack E (1963) Assimilation von (-)-Carnitine durch Pseudomonas ovalis. Acta Biol Med Germ 11:274–280

    Google Scholar 

  • Blanchard JS, Englard S, Kondo A (1982) γ-Butyrobetaine hydroxylase: a unique protective effect of catalase. Arch Biochem Biophys (in press)

  • Cox RA, Hoppel CL (1973) Biosynthesis of carnitine and 4-N-trimethylaminobutyrate from lysine. Biochem J 136:1075–1082

    Google Scholar 

  • Dunn WA, Englard S, (1981) Carnitine biosynthesis by the perfused rat liver from exogenous protein-bound trimethyllysine. J Biol Chem 256:12437–12444

    Google Scholar 

  • Eneroth P, Lindstedt G (1965), Thin-layer chromatography of betaines and other compounds related to carnitine. Anal Biochem 10:479–485

    Google Scholar 

  • Englard S, Horwitz LJ, Tugendhaft-Mills J (1978) A simplified method for the measurement of γ-butyrobetaine hydroxylase activity. J Lipid Res 19:1057–1063

    Google Scholar 

  • Hayaishi O, Nozaki M, Abbott MT (1975) Oxygenases: dioxygenases. In: Boyer PD (ed) The enzymes, vol XII 3rd edition. Academic Press, New York, pp 119–189

    Google Scholar 

  • Kaufman RA, Broquist HP (1977) Biosynthesis of carnitine in Neurospora crassa. J Biol Chem 252:7437–7439

    Google Scholar 

  • Kelly B, Appleman MD (1961) Degradation of ergothioneine by cell-free extracts of Alcaligenes faecalis. J Bacteriol 81:715–720

    Google Scholar 

  • Kleber H-P, Aurich H (1967) Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa. Biochem Biophys Res Commun 26:255–260

    Google Scholar 

  • Kleber H-P, Schöpp, W, Aurich H (1973) Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calcoaceticus. Z Allg Mikrobiol 13:445–447

    Google Scholar 

  • Kleber H-P, Seim H, Aurich H, Strack E (1977) Verwertung von Trimethylammoniumverbindungen durch Acinetobacter calcoaceticus. Arch Microbiol 112:201–206

    Google Scholar 

  • Kleber H-P, Schöpp W, Aurich H (1973) Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calcoaceticus. Z Allg Mikrobiol 13:445–447

    Google Scholar 

  • Kleber H-P, Seim H, Aurich H, Strack E (1977) Verwertung von Trimethylammoniumverbindungen durch Acinetobacter calcoaceticus. Arch Microbiol 112:201–206

    Google Scholar 

  • Kleber H-P, Seim H, Aurich H, Strack E (1978) Beziehung zwischen Carnitinstoffwechsel und Fettsäureassimilation bei Pseudomonas putida. Arch Microbiol 116:213–220

    Google Scholar 

  • Kondo A, Blanchard JS, Englard S (1981) Purification and properties of calf liver γ-butyrobetaine hydroxylase. Arch Biochem Biophys 212:338–346

    Google Scholar 

  • Lindstedt G, Lindstedt S (1970) Cofactor requirements of γ-butyrobetaine hydroxylase from rat liver. J Biol Chem 245:4178–4186

    Google Scholar 

  • Lindstedt G, Lindstedt S, Midtvedt T, Tofft M (1967) The formation and degradation of carnitine in Pseudomonas. Biochemistry 6:1262–1270

    Google Scholar 

  • Lindstedt G, Lindstedt S, Nordin I (1977) Purification and properties of γ-butyrobetaine hydroxylase from Pseudomonas sp. AK1. Biochemistry 16:2181–2188

    Google Scholar 

  • Lindstedt G, Lindstedt S, Tofft M (1970) γ-Butyrobetaine hydroxylase from Pseudomonas sp. AK1. Biochemistry 9:4336–4342

    Google Scholar 

  • McGarry JD, Foster DW (1976) An improved and simplified radiosisotopic assay for the determination of free and esterified carnitine. J Lipd Res 17:277–281

    Google Scholar 

  • Miura J, Englard S (1982) Utilization of γ-butyrobetaine and d-and l-carnitine by Acinetobacter calcoaceticus and Pseudomonas putida. Federation Proc 41:1166

    Google Scholar 

  • Seim H, Löster H, Claus R, Kleber H-P, Strack E (1982) Splitting of the C-N bond in carnitine by an enzyme (trimethylamine forming) from membranes of Acinetobacter calcoaceticus. FEMS Microbiol Lett 15:165–167

    Google Scholar 

  • Strack E, Aurich H, Gruner E (1964) Über die Abbaufähigkeit bestimmter Pseudomonas-Species für (-)-Carnitin. Z Allg Mikrobiol 4:154–160

    Google Scholar 

  • Strack E, Noack R, Aurich H, Focke G, Lorenz I (1962) Untersuchungen über den Abbau von Carnitin durch Pseudomonas pyocyanea A 7244. Acta Biol Med Germ 9:115–125

    Google Scholar 

  • Wall JS, Christianson DD, Dimler RJ, Senti FR (1960) Spectrophotometric determination of betaines and other quaternary nitrogen compounds as their periodides. Anal Chem 32:870–874

    Google Scholar 

  • Wolff JB (1962) Ergothionase from Escherichia coli J Biol Chem 237:874–881

    Google Scholar 

  • Yanasugondha D, Appleman MD (1957) Degradation of ergothioneine by Alcaligenes faecalis. J Bacteriol 74:381–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miura-Fraboni, J., Kleber, HP. & Englard, S. Assimilation of γ-butyrobetaine, and d-and l-carnitine by resting cell suspensions of Acinetobacter calcoaceticus and Pseudomonas putida . Arch. Microbiol. 133, 217–221 (1982). https://doi.org/10.1007/BF00415004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00415004

Key words

Navigation