Skip to main content
Log in

Biotransformation and pharmacokinetics of acenocoumarol (Sintrom®) in man

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The absorption, biotransformation and elimination of the anticoagulant acenocoumarol, 3-[α- (4′-nitrophenyl)-β-acetylethyl]-4-hydroxycoumarin, have been studied by oral administration of 12 mg of a14C-labelled preparation to two male volunteers. Absorption from the gastro-intestinal tract was rapid and the plasma concentration of unchanged drug reached a maximum of 169 and 412 ng/ml, respectively, after 3 hours. The elimination half-life in the two subjects, calculated from the decline between 6 and 24 h, was 8.7 and 8.2 hours. A constant proportion of 98.7% of the drug was bound in vitro to serum proteins over a concentration range of 0.021–8.34 µg/ml, with little interindividual variation. The major portion of the binding was to human serum albumin (97.5%) at two classes of binding sites: association constant K1=1.04×105 l/mole (n1=1) and K2=5.55×103 l/mole (n2=4). In addition to unchanged acenocoumarol, four metabolites were determined in plasma by isotope dilution techniques: the amino-, acetamido-, alcohol1- and alcohol2-metabolites. Of them, the amino-metabolite showed the highest concentration, namely 278 ng/ml, after 6 h in Subject A, and 163 ng/ml after 10 hours in Subject B. Judged from the integrated concentrations, the compounds analyzed accounted for 76 and 89%, respectively, of the total radioactivity in plasma. All the metabolites detected in plasma showed anticoagulant activity when tested in mice. The quantities of the metabolites excreted in urine from 0–120 hours were (Subject A/Subject B): acenocoumarol 0.3/0.2%, amino-metabolite 12.3/7.7%, acetamido-metabolite 19.0/11.1%, alcohol1-metabolite 4.6/9.0%, alcohol2-metabolite 1.7/4.4%, 6-hydroxy-metabolite 6.9/18.3% and 7-hydroxy-metabolite 14.0/22.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Renk, E., Stoll, W.G.: Orale Antikoagulantien. In: Fortschr. Arzneim. Forschg. (ed. E. Jucker) Vol.11, 226–355. Basel und Stuttgart: Birkhäuser 1968

    Google Scholar 

  2. Blatrix, C., Charonnat, S., Tillement, J.P., Israel, J., Brevet, J.P., Debraux, J., Merlin, M.: Métabolisme chez l'homme du dérivé de la 4-hydroxycoumarine: 3(α-acétonyl-p-nitrobenzyl)4-hydroxy-coumarine (Sintrom). Rev. Franç. Etudes Clin. Biol.13, 984–995 (1968)

    Google Scholar 

  3. Dieterle, W., Faigle, J.W., Mory, H., Richter, W.J., Theobald, W.: Biotransformation and Pharmacokinetics of sulfinpyrazone (Anturan®) in Man. Europ. J. clin. Pharmacol.9, 135–145 (1975)

    Google Scholar 

  4. Schmid, K., Riess, W., Egger, H.P., Keberle, H.: In: International Conference on Radioactive Isotopes in Pharmacology (eds. P.G. Waser, B. Glasson), pp. 67–82. London, New York: Wiley 1969

    Google Scholar 

  5. Sie, S.T., van den Hoed, N.: Preparation and performance of high-efficiency columns for liquid chromatography. J. Chromatogr. Sci.,7, 257–266 (1969)

    Google Scholar 

  6. Chan, K.K., Lewis, R.J., Trager, W.F.: Absolute configuration of the four warfarin alcohols. J. med. Chem.15, 1265–1270 (1972)

    Google Scholar 

  7. Montigel, C., Pulver, R.: Die Bestimmung der Prothrombinzeit mit der Thrombokinase “Geigy” (G 23 787). Schweiz. med. Wschr.82, 132–135 (1952)

    Google Scholar 

  8. Dieterle, W., Wagner, J., Faigle, J.W.: Binding of chlorthalidone (Hygroton®) to blood components in man. Europ. J. clin. Pharmacol.10, 37–42 (1976)

    Google Scholar 

  9. Scatchard, G.: The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci.51, 660–672 (1949)

    Google Scholar 

  10. Fletscher, J.E., Spector, A.A.: A procedure for computer analysis of data from macromolecule-ligand binding studies. Comp. Biomed. Res.2, 164–175 (1968)

    Google Scholar 

  11. Garten, S., Wosilait, W.D.: An analysis of the binding of coumarin anticoagulants by human serum albumin. Comp. gen. Pharmac.3, 83–88 (1972)

    Google Scholar 

  12. Tillement, J.-P., Zini, R., Mattei, C., Singlas, E.: Effect of phenylbutazone on the binding of vitamin K antagonists to albumin. Europ. J. clin. Pharmacol.6, 15–18 (1973)

    Google Scholar 

  13. Tillement, J.-P., Zini, R., d'Athis, P., Vassent, G.: Binding of certain acidic drugs to human albumin: theoretical and practical estimation of fundamental parameters. Europ. J. clin. Pharmacol.7, 307–313 (1974)

    Google Scholar 

  14. Barker, W.M., Hermodson, M.A., Link, K.P.: The metabolism of 4-C414-warfarin sodium by the rat. J. Pharmacol. exp. Ther.171, 307–313 (1970)

    Google Scholar 

  15. Lewis, R.J., Trager, W.F.: The metabolic fate of warfarin: studies on the metabolism in plasma. Ann. N. Y. Acad. Sci.179, 205–212 (1971)

    Google Scholar 

  16. Deckert, F.W.: Warfarin metabolism in the guinea pig I. Pharmacological studies. Drug Met. Dispos.1, 704–710 (1973)

    Google Scholar 

  17. Lewis, R.J., Trager, W.F., Robinson, A.J., Chan, K.K.: Warfarin metabolites: the anticoagulant activity and pharmacology of warfarin alcohols. J. Lab. clin. Med.81, 925–931 (1973)

    Google Scholar 

  18. Rieder, J.: Methoden zur Bestimmung von 1,3-dihydro-7-nitro-5-phenyl-2H-1,4-benzodiazepin-2-on und seinen Hauptmetaboliten in biologischen Proben und Ergebnisse von Versuchen über die Pharmakokinetik und den Metabolismus dieser Substanz bei Mensch und Ratte. Arzneim.-Forsch. (Drug Res.)15, 1134–1148 (1965)

    Google Scholar 

  19. Cox, P.L., Heotis, J.P., Polin, D., Rose, G.M.: Quantitative determination of dantrolene sodium and its metabolites by differential pulse polarography. J. Pharm. Sci.58, 987–989 (1969)

    Google Scholar 

  20. Eschendorf, E.: Untersuchung über das Schicksal des Antikonvulsivums Clonazepam im Organismus der Ratte, des Hundes und des Menschen. Arzneim.-Forsch. (Drug Res.)23, 390–400 (1973)

    Google Scholar 

  21. Woolhouse, N.M., Kaye, B., Monro, A.M., Parke, D.V.: The metabolism of 5,7-dinitroindazole in the mouse and the rat. Xenobiotica3, 511–524 (1973)

    Google Scholar 

  22. Yanagi, Y., Haga, F., Endo, M., Kitagawa, S.: Comparative metabolic study of nimetazepam and its desmethyl derivative (nitrazepam) in rats. Xenobiotica5, 245–257 (1975)

    Google Scholar 

  23. Connors, T.A., Hickman, J.A., Jarman, M., Melzack, D.H., Ross, W.C.J.: The metabolism of the anti-tumour agent 1 (1-aziridinyl)-2,4-dinitrobenzene (CB 1837). Biochem. Pharmacol.24, 1665–1670 (1975)

    Google Scholar 

  24. Trager, W.F., Lewis, R.J., Garland, W.A.: Mass spectral analysis in the identification of human metabolites of warfarin. J. med. Chem.13, 1196–1204 (1970)

    Google Scholar 

  25. Lewis, R.J., Trager, W.F.: Warfarin metabolism in man: identification of metabolites in urine. J. clin. Invest.49, 907–913 (1970)

    Google Scholar 

  26. Burns, J.J., Weiner, M., Simson, G., Brodie, B.B.: The biotransformation of ethylbiscoumacetate (Tromexan) in man, rabbit and dog. J. Pharmacol. exp. Ther.108, 33–41 (1953)

    Google Scholar 

  27. Shilling, W.H., Crampton, R.F., Longland, R.C.: Metabolism of coumarin in man. Nature221, 664–665 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieterle, W., Faigle, J.W., Montigel, C. et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom®) in man. Eur J Clin Pharmacol 11, 367–375 (1977). https://doi.org/10.1007/BF00566534

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566534

Key words

Navigation