Skip to main content
Log in

Urinary excretion of the enantiomers of ifosfamide and its inactive metabolites in children

  • Original Articles
  • Ifosfamide, Enantiomers, Urinary Excretion, Children
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

The precondition for the antineoplastic effect of ifosfamide (ifo) is the oxidation of the oxazaphosphorine ring system, which contains a chiral centre at the phosphorous atom. This “ring oxidation” leads to the formation of alkylating mustard via several steps. A second metabolic pathway produces the cytostatically inactive metabolites 2- and 3-dechloroethyl-ifosfamide (2-d- and 3-d-ifo). The urinary excretion of the optical isomers of unmetabolised ifo and of 2- and 3-d-ifo, which represents the amount of ifo that has not been activated, was investigated by capillary gas chromatography for 18 treatment cycles in 14 children on various therapeutic schedules. The total cumulative excretion in 12 completely sampled cycles ranged from 27% to 50% of the ifo dose. Between 14% and 34% of the dose could be detected as ifo; 9% to 29%, as 3-d-ifo; and 2% to 8%, as 2-d-ifo. At 24 h after the end of therapy, excretion was nearly complete. Without exception, slightly more R-ifo (53%–61%) than S-ifo was excreted. S-2-d-ifo (50%–73%) was the main 2-d-metabolite. S-3-d-ifo (deriving from R-ifo) predominated in 6 of 14 children and R-3-d-ifo, in 8. Enantiomer-specific excretion increased after the end of infusion (up to 73% for R-ifo and 27% for S-ifo). We demonstrated stereospecific metabolism of ifo in children, with two different patterns of side-chain oxidation being observed. There was no evidence of important stereospecific ring oxidation in most children. A benefit should not be expected from the therapeutic application of pure enantiomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen LM, Creaven PJ (1972) In vitro activation of isophosphamide (NSC-109 724), a new oxazaphosphorine, by rat liver microsomes. Cancer Chemother Rep 56: 603–610

    Google Scholar 

  2. Allen LM, Creaven PJ, Nelson RL (1976) Studies on the human pharmacokinetics of ifosfamide (NCI-109 724). Cancer Treat Rep 60: 451–458

    Google Scholar 

  3. Blaschke G, Koch U (1986) Untersuchungen zum stereoselektiven Metabolismus von Ifosfamid. Arch Pharmacol 319: 1052

    Google Scholar 

  4. Blaschke G, Widey W (1989) Metabolismus der Enantiomere des Zytostatikums Ifosfamid. Arzneimittelforschung 39(1): 223–226

    Google Scholar 

  5. Blaschke G, Hilgard P, Maibaum J, Niemeyer U, Pohl J (1986) Präparative Trennung der Ifosfamid-Enantiomere und ihre pharmakologisch-toxikologische Untersuchung. Arzneimittelforschung 36 (II): 1493–1495

    Google Scholar 

  6. Cerny T, Castiglione M, Brunner K, Küpfer A, Martinelli G, Lind M (1990) Ifostamide by continuous infusion to prevent encephalopathy. Lancet I: 175

    Google Scholar 

  7. Connors TA, Cox PJ, Farmer PB, Foster AB, Jarman M (1973) Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 23: 115–129

    Google Scholar 

  8. Cox PJ, Farmer PB, Jarman M, Jones M, Stec WJ, Kinas R (1976) Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide. Biochem Pharmacol 25: 993–996

    Google Scholar 

  9. Cox PJ, Farmer PB, Jarman M, Kinas RW, Stec WJ (1978) Stereoselectivity in the metabolism of the enantiomers of cyclophosphamide in mice, rats and rabbits. Drug Metab Dispos 6: 617–622

    Google Scholar 

  10. Delepine N, Taillard F, Desbois JG, Cornille H, Delepine G, Jasmin C (1986) CNS-side effects induced by ifosfamide-mesna in children with osteosarcomas. Biomed Pharmacother 40: 173–175

    Google Scholar 

  11. Farmer PB (1988) Enantiomers of cyclophosphamide and iphosphamide. Biochem Pharmacol 37: 145–148

    Google Scholar 

  12. Goren MP, Wright RK, Pratt CB, Pell FE (1986) Dechloroethylation of ifosfamide and neurotoxicity. Lancet II: 1219–1220

    Google Scholar 

  13. Goren MP, Wright RK, Horowitz ME, Pratt CB (1987) Ifosfamide induced subclinical tubular nephrotoxicity despite mesna. Cancer Treat Rep 71: 127–130

    Google Scholar 

  14. Goren MP, Pratt CB, Viar MJ (1989) Tubular nephrotoxicity during long-term ifosfamide and mesna therapy. Cancer Chemother Pharmacol 25: 70–72

    Google Scholar 

  15. Heim ME, Fiene R, Schick E, Wolpert E, Queißer W (1981) Central nervous side effects following ifosfamide monotherapy of advanced renal carcinoma. J Cancer Res Clin Oncol 100: 113–116

    Google Scholar 

  16. Hill DL, Russel Laster W, Kirk MC, El Dareer S, Struck RF (1973) Metabolism of iphosphamide [2-(2-chloroethylamino)-3-(2-chloroethyl)tetrahydro-2H-1,3-2-oxazaphosphorine-2-oxide] and production of a toxic iphosphamide metabolite. Cancer Res 33: 1016–1022

    Google Scholar 

  17. Jürgens H, Treuner J, Winkler K, Göbel U (1989) Ifosfamide in pediatric malignancies. Semin Oncol 16 [Suppl 3]: 46–50

    Google Scholar 

  18. Kellie SJ, Pritchard J, Bowman A, Kraker J de, Lilleyman JS (1987) Ifosfamide neurotoxicity in children. J Clin Oncol 5: 512–514

    Google Scholar 

  19. Kusnierczyk H, Radzikowski C, Paprocka M, Budzynski W, Rak J, Kinas R, Misiura K, Stec W (1986) Antitumor activity of optical isomers of cyclophosphamide, ifosfamide and trofosfamide as compared to clinically used racemates. J Immunopharmacol 8: 455–480

    Google Scholar 

  20. Lewis LD, Meanwell CA (1990) Ifosfamide pharmacokinetics and neurotoxicity. Lancet I: 175–196

    Google Scholar 

  21. Lind J, Roberts HL, Thatcher N, Idle JR (1990) The effect of route of administration and fractionation of dose on the metabolism of ifosfamide. Cancer Chemother Pharmacol 26: 105–111

    Google Scholar 

  22. Masurel D, Houghton PJ, Young CL, Wainer I (1990) Efficacy, toxicity, pharmacokinetics, and in vitro metabolism of the enantiomers of ifosfamide in mice. Cancer Res 50: 252–255

    Google Scholar 

  23. Misiura K, Okruszek A, Pankiewicz K, Stec WJ, Czownicki Z, Utracka B (1983) Stereospecific synthesis of chiral metabolites of ifosfamide and their determination in the urine. J Med Chem 26: 674–679

    Google Scholar 

  24. Moncrieff M, Foot A (1989) Fanconi syndrome after ifosfamide. Cancer Chemother Pharmacol 23: 121–122

    Google Scholar 

  25. Newbury-Ecob rA, Noble VW, Barbor PRH (1989) Ifosfamide-induced Fanconi syndrome. Lancet I: 1328

    Google Scholar 

  26. Ninane J, Baurain R, Kraker J de, Ferster A, Trouet A, Cornu G (1989) Alkylating activity in serum, urine and CSF following high-dose ifosfamide in children. Cancer Chemother Pharmacol 24 [Suppl]: 82–86

    Google Scholar 

  27. Norpoth K, Addicks HW, Witting U, Müller G, Raidt H (1975) Quantitative Bestimmung von Cyclophosphamid, Ifosfamid und Trofosfamid sowie ihrer stabilen Metabolite auf der DC-Platte mit 4-Pyridinaldehyd-2-benzothiazolylhydrazon (PHB). Arzneimittelforschung 25: 1331–1336

    Google Scholar 

  28. Patterson WP, Khojaseh A (1989) Ifosfamide-induced renal tubular defects. Cancer 63: 649–651

    Google Scholar 

  29. Pearcey R, Calvert R, Mehta A (1988) Disposition of ifosfamide in patients receiving ifosfamide infusion therapy for the treatment of cervical carcinoma. Cancer Chemother Pharmacol 22: 353–355

    Google Scholar 

  30. Pinkerton CA, Philip T, Brunat Mentigney M (1985) Ifosfamide, mesna, and encephalopathy. Lancet I: 1399

    Google Scholar 

  31. Pratt CB, Green AA, Horowitz ME, Meyer WH, Etcubanas E, Douglass E, Hayes FA, Thompson E, Wilimas J, Igarashi M, Kovnar E (1986) Central nervous system toxicity following the treatment of pediatric patients with ifosfamide/mesna. J Clin Oncol 4: 1253–1261

    Google Scholar 

  32. Salloum E, Flamant F, Goshn M, Taleb N, Akatchereian C (1987) Irreversible encephalopathy with ifosfamide/mesna. J Clin Oncol 5: 1303–1304

    Google Scholar 

  33. Skinner R, Pearson ADJ, Price L, Coulthard MG, Craft AW (1989) Nephrotoxicity of ifosfamide in children. Lancet II: 159

    Google Scholar 

  34. Skinner R, Pearson ADJ, Price L, Cunningham K, Craft AW (1989) Hypophosphataemic rickets after ifosfamide treatment in children. BMJ 298: 1560–1561

    Google Scholar 

  35. Smeitink J, Verreussel M, Schröder C, Lippens R (1988) Nephrotoxicity associated with ifosfamide. Eur J Pediatr 148: 164–166

    Google Scholar 

  36. Watkin SW, Husband DJ, Green JA, Warenius HM (1989) Ifosfamide encephalopathy: a reappraisal. Eur J Cancer Clin Oncol 1303–1310

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was financially supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boos, J., Welslau, U., Ritter, J. et al. Urinary excretion of the enantiomers of ifosfamide and its inactive metabolites in children. Cancer Chemother. Pharmacol. 28, 455–460 (1991). https://doi.org/10.1007/BF00685822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685822

Keywords

Navigation