Skip to main content
Log in

Abstract

Animal scale-up is discussed as a formal approach to drug distribution in the body which permits consideration of scale through the individual processes that occur. Some of these are physical, such as blood flows, tissue binding, and kidney clearances. Others are chemical, such as metabolic reactions. The physical processes often vary quite predictably among mammalian species, and much is known about these independent of any chemical reactions. Certain metabolic reactions vary greatly and unpredictably among species. The physical and chemical processes interact so that the relationship of the pharmacokinetics of any given drug between one species and another may be quite straightforward or it may be rather obscure unless the correct interaction is perceived. Methotrexate pharmacokinetics are reviewed in discussing the use of animal scale- up for a drug where only physical processes need be considered. Problems involving metabolism are illustrated for thiopental and cytosine arabinoside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. M. Himmelblau and K. B. Bischoff.Process Analysis and Simulation, Wiley, New York, 1968.

    Google Scholar 

  2. K. B. Bischoff and R. G. Brown. Drug distribution in mammals.Chem. Eng. Prog. Symp. Ser. No. 66 62: 33–45(1966).

    CAS  Google Scholar 

  3. H. L. Price, P. J. Kovnat, J. N. Safer, E. H. Conner, and M. L. Price. The uptake of thio-pental by body tissues and its relation to the duration of narcosis.Clin. Pharmacol. Therap. 1: 16–22(1960).

    CAS  Google Scholar 

  4. W. Perl, H. Rackow, E. Salanitre, G. L. Wolf, and R. M. Epstein. Intertissue diffusion effect for inert fat-soluble bases.J. Appl. Physiol. 20: 621–627 (1965).

    CAS  PubMed  Google Scholar 

  5. H. Rackow, E. Salanitre, R. M. Epstein, G. L. Wolf, and W. Perl. Simultaneous uptake of N2O and cyclopropane in man as a test of compartment model.J. Appl. Physiol. 20: 611–620 (1965).

    CAS  PubMed  Google Scholar 

  6. E. Krüger-Thiemer, P. Bunger, L. Dettli, P. Spring, and E. Wempe. The role of the therapeutic regimen in dosage design. I,II. Dosage regimen calculation of chemotherapeutic regimens. III. Sulfasymazine.Chemotherapia 10: 61–73, 129–144, 325–338 (1965–1966).

    Article  Google Scholar 

  7. E. Krüger-Thiemer, W. Diller, and P. Bunger. Pharmacokinetic models regarding protein binding of drugs.Antimicrob. Agents Chemotherap., Washington, D.C., 1965, pp. 183–191 (1966).

  8. J. R. Gillette. Reversible binding as a complication in relating thein vitro effect of drugs to theirin vivo activity. In B. B. Brodie and J. R. Gillette (eds.),Drugs and Enzymes, Vol. 4, Proc. 2nd Internat. Pharmacol. Mtg., 1963, Pergamon Press, Oxford, Czechoslovak Medical Press, Praha, 1965, pp. 9–22.

    Google Scholar 

  9. B. B. Brodie, L. C. Mark, E. M. Papper, P. A. Lief, E. Bernstein, and E. A. Rovenstine. The fate of thiopental in man and a method for its estimation in biological materials.J. Pharmacol. Exptl. Therap. 98: 85–96 (1950).

    CAS  Google Scholar 

  10. B. B. Brodie, E. Bernstein. and L. C. Mark. The role of body fat in limiting the duration of action of thiopental.J. Pharmacol. Exptl. Therap. 105: 421–426 (1952).

    CAS  Google Scholar 

  11. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharma-cokinetics.J. Pharm. Sci. 60: 1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  12. J. Crank.The Mathematics of Diffusion, Oxford, London, 1965.

    Google Scholar 

  13. D. P. Rall. Comparative pharmacology and cerebrospinal fluid.Fed. Proc. 26: 1020–1023 (1967).

    CAS  PubMed  Google Scholar 

  14. B. B. Brodie, H. Kurz, and L. S. Schanker. The importance of dissociation constant and lipid-solubility in influencing the passage of drugs into the cerebrospinal fluid.J. Pharmacol. Exptl. Therap. 130: 20–25 (1960).

    CAS  Google Scholar 

  15. R. S. Bourke, H. L. Gabelnick, and O. Young. Mediated transport of chloride from blood into cerebrospinal fluid.Exptl. Brain Res. 10: 17–38 (1970).

    Article  CAS  Google Scholar 

  16. H. L. Gabelnick, R. L. Dedrick, and R. S. Bourke.In vivo mass transfer of chloride during exchange hemodialysis.J. Appl. Physiol. 28: 636–640 (1970).

    CAS  PubMed  Google Scholar 

  17. D. J. Reed and D. M. Woodbury. Effect of hypertonic urea on cerebrospinal fluid pressure and brain volume.J. Physiol. 164: 252–264 (1962).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59: 149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. R. L. Dedrick, K. B. Bischoff, and D. S. Zaharko. Interspecies correlation of plasma concentration history of methotrexate (NSC-740).Cancer Chemotherap. Rep. Pt. 1 54: 95–101 (1970).

    CAS  Google Scholar 

  20. D. S. Zaharko, R. L. Dedrick, and V. T. Oliverio. Prediction of the distribution of metho-trexate in the sting rays Dasyatidae Sabina and Sayi by use of a model developed in mice.Comp. Biochem. Physiol. 42A: 183–194 (1972).

    Article  Google Scholar 

  21. D. S. Zaharko and V. T. Oliverio. Reinvestigation of methotrexate metabolism in rodents.Biochem. Pharmacol. 19: 2923–2924 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. E. J. Freireich, E. A. Gehan, D. P. Rall, L. H. Schmidt, and H. E. Skipper. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey and man.Cancer Chemotherap. Rep. 50: 219–244 (1966).

    CAS  Google Scholar 

  23. E. F. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109: 579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  24. L. B. Mellett. Comparative drug metabolism.Prog. Drug. Res. 13: 136–169 (1969).

    CAS  PubMed  Google Scholar 

  25. T. C. Butler. Prepared discussion. In C. O. Miller (ed.), Conference on Nonhuman Primate Toxicology, 1966, Washington, D.C., HEW, PDA, 1968, pp. 68–69.

    Google Scholar 

  26. J. G. Wagner and R. E. Damiano. Relationship among area under serum concentration curve, dose and half-life for novobiocin administered in combination with tetracycline.J. Clin. Pharmacol 8: 102–112 (1968).

    CAS  Google Scholar 

  27. K. Schmidt-Nielsen. Energy metabolism, body size, and problems of scaling.Fed. Proc. 29(4): 1524–1532 (1970).

    CAS  PubMed  Google Scholar 

  28. L. C. Mark and L. Brand. Where does the pentothal go?Bull. N. Y. Acad. Med. 40: 476–482 (1964).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. L. J. Saidman and E. I. Eger. The effect of thiopental metabolism on duration of anesthesia.Anesthesiology 27: 118–126 (1966).

    Article  CAS  PubMed  Google Scholar 

  30. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57: 1346–1357 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. G. W. Camiener and C. G. Smith. Studies of the enzymatic deamination of cytosine arabinoside. I. Enzyme distribution and species specificity.Biochem. Pharmacol. 14: 1405–1416 (1965).

    Article  CAS  PubMed  Google Scholar 

  32. G. W. Camiener. Studies of the enzymatic deamination of cytosine arabinoside. II. Properties of the deaminase of human liver.Biochem. Pharmacol. 16: 1681–1689 (1967).

    Article  CAS  PubMed  Google Scholar 

  33. G. W. Camiener. Studies of the enzymatic deamination of cytosine arabinoside. III. Substrate requirements and inhibitors of the deaminase of human liver.Biochem. Pharmacol. 16: 1691–1702 (1967).

    Article  CAS  PubMed  Google Scholar 

  34. R. V. Loo, M. J. Brennan, and R. W. Talley. Clinical pharmacology of cytosine arabinoside.Proc. Am. Ass. Cancer Res. 6: 41 (1965).

    Google Scholar 

  35. L. T. Mulligan and L. B. Mellett. A useful thin-layer chromatography method for the determination of cytidine aminohydrolase activity in serum.J. Chromatog. 43: 376–381 (1969).

    Article  CAS  Google Scholar 

  36. R. Tomchick, L. D. Saslaw. and V. S. Waravdekar. Mouse kidney cytidine deaminase purification and properties.J. Biol. Chem. 243: 2534–2537 (1968).

    CAS  PubMed  Google Scholar 

  37. R. L. Dedrick. D. D. Forrester, and D. H. W. Ho.In vitro-in vivo correlation of drug metabolism—Deamination of 1-β-d-arabinofuranosylcytosine.Biochem. Pharmacol. 21: 1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  38. A. Reinberg and F. Halberg. Circadian chronopharmacology.Ann. Rev. Pharmacol. 11: 455–492 (1971).

    Article  CAS  PubMed  Google Scholar 

  39. E. Haus, F. Halberg, L. E. Scheving, J. E. Pauly, S. Cardosa, J. F. W. Kuhl, R. B. Sothern, R. N. Shiotsuka, and D. S. Hwang. Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system.Science 177: 80–82 (1972).

    Article  CAS  PubMed  Google Scholar 

  40. J. G. Wagner. Pharmacokinetics.Ann. Rev. Pharmacol. 8: 67–94 (1968).

    Article  CAS  PubMed  Google Scholar 

  41. J. G. Wagner.Biopharmaceutics and Relevant Pharmacokinetics, Drug Intelligence Publications, Hamilton, Ill., 1971.

    Google Scholar 

  42. K. B. Bischoff, K. J. Himmelstein, R. L. Dedrick, and D. S. Zaharko. InAdvances in Chemistry Series No. 118, American Chemical Society, Washington, D.C., 1973, pp. 47–64.

    Google Scholar 

  43. B. B. Brodie and W. D. Reid. Some pharmacological consequences of species variation in rate of metabolism.Fed. Proc. 26: 1062–1070 (1967).

    CAS  PubMed  Google Scholar 

  44. W. C. Werkheiser. Mathematical simulation in chemotherapy.Ann. N.Y. Acad. Sci. 186: 343–358 (1971).

    Article  CAS  PubMed  Google Scholar 

  45. D. S. Zaharko and R. L. Dedrick, Applications of pharmacokinetics to cancer chemotherapy.Pharmacology and the Future of Man. Proc. 5th Internat. Congr. Pharmacol., Vol. 3, Karger, Basel, 1973, pp. 316–331.

    Google Scholar 

  46. D. L. Mount and H. W. Boyle. Parathion—Use of blood concentration to diagnose mortality of fish.Environ. Sci. Tech. 3: 1183–1185 (1969).

    Article  CAS  Google Scholar 

  47. R. L. Dedrick, P. Vantoch, E. A. Gombos, and R. Moore. Kinetics of activated carbon kidney.Trans. Am. Soc. Artif. Int. Organs 13: 236–242 (1967).

    CAS  Google Scholar 

  48. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62: 882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedrick, R.L. Animal scale-up. Journal of Pharmacokinetics and Biopharmaceutics 1, 435–461 (1973). https://doi.org/10.1007/BF01059667

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059667

Key words

Navigation