Skip to main content
Log in

Physiological pharmacokinetie model of adriamycin delivered via magnetic albumin microspheres in the rat

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The influence of magnetic albumin microspheres on the disposition of adriamycin was evaluated. Adriamycin concentrations were monitored in multiple rat tissues for 48 hr after its intra-arterial administration (2 mg/kg) as a solution and associated with magnetic albumin microspheres. The magnetic dosage form was targeted to a predefined tail segment with a magnetic field strength of 8000 G applied for 30 min after dosing. A physiological pharmacokinetic model was used to describe the disposition of adriamycin following its administration from either dosage fcrm. The model developed for the data resulting from administration of adriamycin as a solution served as a foundation for the model developed for adriamycin resulting from the administration of adriamycin associated with the magnetic dosage form. The model for adriamycin following administration of the magnetic microspheres required additional relationships to describe the transport of adriamycin associated with the microspheres. For both models, the predicted adriamycin concentrations were in adequate agreement with the observed values. The present investigation demonstrates the use of a physiological pharmacokinetic modeling method to represent drug kinetics following its administration via a targeted drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Sezaki and M. Hashida. Macromolecule-drug conjugates in targeted cancer chemotherapy.CRC Crit. Rev. Ther. Drug Carrier Sys. 1:1–38 (1984).

    CAS  Google Scholar 

  2. K. K. Chan, J. L. Cohen, J. F. Gross, K. J. Himmelstein, J. R. Bateman, Y. Tsu-Lee, and A. S. Marlis. Prediction of adriamycin disposition in cancer patients using a physiological pharmacokinetic model.Cancer Treat. Rep. 62:1161–1171 (1978).

    CAS  PubMed  Google Scholar 

  3. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Prediction of diazepam disposition in the rat and man by a physiological based pharmacokinetic model.J. Pharmacokin. Biopharm. 11:577–593 (1983).

    Article  CAS  Google Scholar 

  4. K. Widder, G. Flouret, and A. Senyei. Magnetic microspheres: Synthesis of a novel parenteral drug carrier.J. Pharm. Sci. 68:79–82 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. K. J. Widder, A. E. Senyei, and D. G. Scarpelli. Magnetic microspheres: A model system for site specific drug delivery in vivo.Proc. Soc. Exp. Biol. Med. 58:141–146 (1978).

    Article  Google Scholar 

  6. K. J. Widder, R. M. Morris, G. Poore, D. P. Howard, Jr., and A. E. Senyei. Tumor regression in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin.Proc. Nat. Acad. Sci. US. 78:579–581 (1981).

    Article  CAS  Google Scholar 

  7. K. Sugibayashi, M. Okumura, and Y. Morimoto. Biomedical applications of magnetic fluids III. Antitumor effect of magnetic albumin microsphere-entrapped adriamycin on lung metastasis of AH 7974 in rats.Biomaterials 3:181–186 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. P. K. Gupta, C. T. Hung, F. C. Lam, and D. G. Perrier. Albumin Microspheres III. Synthesis and characterization of microspheres containing adriamycin and magnetite.Int. J. Pharmaceut. 43:167–177 (1988).

    Article  CAS  Google Scholar 

  9. J. M. Gallo, C. T. Hung, and D. G. Perrier. Reversed-phase ion-pairing HPLC of adriamycin and adriamycinol in rat serum and tissues.J. Pharmaceut. Biomed. Anal. 4:483–490 (1986).

    Article  CAS  Google Scholar 

  10. K. B. Bischoff and R. G. Brown. Drug distribution in mammals.Chem. Eng. Progr. Symp. 62:33–45 (1966).

    CAS  Google Scholar 

  11. Y. Sasaki and H. N. Wagner, Jr. Measurement of the distribution of cardiac output in unanesthetized rats.J. Appl. Physiol. 30:879–884 (1971).

    CAS  PubMed  Google Scholar 

  12. A. Tsuji, E. Miyamoto, T. Terasaki, and T. Yamana. Physiological pharmacokinetics of beta-lactam antibiotics: Penicillin V distribution and elimination after intravenous administration in rats.J. Pharm. Pharmacol. 31:116–119 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. L. A. Sapirstein, E. H. Sapirstein, and A. Bredemeyer. Effect of hemorrhage on the cardiac output and its distribution in the rat.Circ. Res. 8:135–148 (1960).

    Article  CAS  PubMed  Google Scholar 

  14. J. M. Gallo, F. C. Lam, and D. G. Perrier. Area method for the estimation of partition coefficients for physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 15:271–280 (1987).

    Article  CAS  Google Scholar 

  15. J. M. Gallo, F. C. Lam, and D. G. Perrier. Moment method for the estimation of mass transfer coefficients for physiological pharmacokinetic models. Submitted for publication.

  16. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. Experimental evidence of characteristic tissue distribution of adriamycin. Tissue DNA concentration as a determinant.J. Pharm. Pharmacol. 34:597–600 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. M. L. Rocci and W. J. Jusko. LAGRAN program for area and moments in pharmacokinetic analysis.Comp. Prog. Biomed. 16: 203–216 (1983).

    Article  Google Scholar 

  18. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in applications of the artificial kidney.Chem. Eng. Progr. Symp. 64:32–44 (1968).

    CAS  Google Scholar 

  19. C. N. Chen and J. C. Andrade. Pharmacokinetic model for simultaneous determination of drug levels in organs and tissues.J. Pharm. Sci. 65:717–724 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Advanced Continuous Simulation Language (ACSL), Mitchell and Gauthier Associates, Concord, MA.

  21. J. G. Townsend. Physiologically based pharmacokinetics of anti-cancer drugs and toxic substances-application to adriamycin and ethylene glycol. Master's thesis, Carnegie-Mellon University, April 1980.

  22. L. E. Gerlowski. Physiologically based pharmacokinetics of anti-cancer agents and trace metals-adriamycin, zinc and calcium. Master's thesis, Carnegie-Mellon University, May 1982.

  23. H. J. Peters, G. R. Gordon, D. Kashiwase, and E. M. Action. Tissue distribution of doxorubicin and doxorubicinol in rats receiving multiple doses of doxorubicin.Cancer Chemother. Pharmacol. 7:65–69 (1981).

    Article  CAS  PubMed  Google Scholar 

  24. K. J. Widder, P. A. Marino, R. M. Morris, D. P. Howard, G. A. Poore, and A. E. Senyei. Selective targeting of magnetic albumin microspheres to the Yoshida sarcoma: Ultrastructural evaluation of microsphere disposition.Eur. J. Cancer Clin. Oncol. 19:141–147 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. K. J. Widder, A. E. Senyei, and D. F. Ranney. Magnetically responsive microspheres and other carriers for the biophysical targeting to antitumor agents. In S. Garattini, A. Goldin, F. Howking, J. Kopin, and R. J. Schnitzer (eds.),Advances in Pharmacology and Chemotherapy, Academic Press, NY, 1979, p. 213–271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research support from the Medical Research Council of New Zealand is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, J.M., Hung, C.T., Gupta, P.K. et al. Physiological pharmacokinetie model of adriamycin delivered via magnetic albumin microspheres in the rat. Journal of Pharmacokinetics and Biopharmaceutics 17, 305–326 (1989). https://doi.org/10.1007/BF01061899

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061899

Key words

Navigation