Skip to main content
Log in

Effects of perfusate flow rate on measured blood volume, disse space, intracellular water space, and drug extraction in the perfused rat liver preparation: Characterization by the multiple indicator dilution technique

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The effect of hepatic blood flow on the elimination of several highly cleared substrates was studied in the once-through perfused rat liver preparation. A constant and low input concentration of ethanol (2.0 mM), [14C]-phenacetin and [3H]-acetaminophen (0.36 and 0.14 μM, respectively), or meperidine (8.1 μM) was delivered once-through the rat liver preparation in five flow periods (>35 min each); control flow periods at 12 ml/min were interrupted by flow changes to 8 or 16 ml/min. The steady-state hepatic availabilities (F or outflow survivals) at 12 ml/min were ethanol, 0.075±0.038; [14C]-phenacetin, 0.15±0.059; [3 H]-acetaminophen, 0.34±0.051; meperidine, 0.047±0.017. Flow-induced changes were different among the compounds: with reduced flow (8 ml/min), F was decreased for ethanol (0.061 ±0.032) and [3H]-acetaminophen (0.28±0.051), as expected, but was increased for [14C]-phenacetin (0.20 ±0.068) and meperidine (0.05 ±0.03); with an elevation of flow (to 16 ml/min), F was increased for all compounds, as expected of shorter sojourn times: ethanol, 0.13 ±0.065; [14C]-phenacetin, 0.22 ±0.062; [3H]-acetaminophen, 0.43 ±0.063; meperidine, 0.055±0.022. A marked increase in F for ethanol had occurred when flow changed from 12 to 16 ml/min due to nonlinear metabolism; the latter was confirmed by a reduction in the extraction ratios at increasing concentrations (1.8 to 11.4mM); this condition was not present for the other compounds. In order to explain the observations, we used the multiple indicator dilution technique to investigate the flow-induced behaviors of tissue distribution spaces of vascular and intracellular references in the perfused rat liver preparation. After a rapid injection of noneliminated reference materials [51 Cr-labeled RBC (vascular marker),125I-labeled albumin, [14C]-sucrose (extracellular markers), and [3H]-H2O (cellular marker)] into the portal veins of livers perfused at the randomly chosen flow rates (5, 8, 10, 12, 14, or 16 ml/min), the hepatic venous outflow profiles were characterized. Estimated sinusoidal blood volume, total albumin and sucrose distribution spaces, the Disse space, total water space, and the transit time for intracellular water showed strong correlations with blood flow rate. No correlation was found, however, between blood/water flow rate and intracellular water space (a space also accessed by substrates). At < 0.75 ml blood/min/g liver, intracellular water space was decreased, but at > 0.75 ml blood/min/g liver, the observed values were constant (0.635±0.024 ml/g liver) and independent of flow rate. Estimations of the mean transit time for cell water enabled calculations of sequestration rate constants (intrinsic clearance per ml cell water). The estimated sequestration rate constants for meperidine and phenacetin were decreased to 64% when flow was decreased from 12 to 8 ml/min, whereas those for acetaminophen (preformed or generated from phenacetin) were decreased minimally (10 to 11%), and these were generally unchanged for most compounds when flow was altered from 12 to 16 ml/min. The composite findings suggest that a critical flow is required to maintain maximal and constant accessibility into hepatocytes. Flow rates below this critical value affect hepatocyte recruitment differentially, as suggested by drug metabolic data. Below the critical flow rate, the reduction in intracellular space affected mostly metabolic processing of drugs that are mediated by enzymes located in the perihepatic venular region, but the effects are virtually imperceptible for biotransformation of drugs that involve enzyme systems in the periportal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Winkler, S. Keiding, and N. Tygstrup. Clearance as a quantitative measure of structure and function. In P. Paumgartner and R. Presig (eds.),The liver: Quantitative Aspects of Structure and Functions, Karger, Basel, 1973, pp. 144–155.

    Google Scholar 

  2. M. Rowland, L. Z. Benet, and G. G. Graham Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  3. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical consideration of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cells binding, and the hepatocellular activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  4. M. S. Roberts and M. Rowland. Hepatic elimination-dispersion model.J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. L. Bass, P. Robinson, and A. J. Bracken. Hepatic elimination of flowing substrates: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic clearance model: comparison among the distributed, parallel-tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. G. R. Wilkinson. Clearance approaches in pharmacology.Pharmacol. Rev. 39:1–47 (1987).

    CAS  PubMed  Google Scholar 

  8. D. G. Shand, D. M. Kornhauser, and G. R. Wilkinson. Effects of route of administration and blood flow on hepatic elimination.J. Pharmacol. Exp. Ther. 195:424–432 (1975).

    CAS  PubMed  Google Scholar 

  9. K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for the acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5:655–680 (1977).

    Article  CAS  Google Scholar 

  10. A. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearances: Discrimination between the “well-stirred” and “parallel tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver.J. Pharmacol. Exp. Ther. 205:465–470 (1978).

    CAS  PubMed  Google Scholar 

  12. R. A. Branch, D. G. Shand, G. R. Wilkinson, and A. S. Nies. Increased clearance of antipyrine and d-propranolol after phenobarbital treatment in the monkey. Relative contributions of enzyme induction and increased hepatic blood flow.J. Clin. Invest. 53:1101–1107 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. C. A. Goresky, D. Cousineau, C. P. Rose, and S. Lee. Lack of liver vascular response to carotid occlusion in mildly acidotic dogs.Am. J. Physiol. 251 (Heart Circ. Physiol. 20):H991-H999 (1986).

    CAS  PubMed  Google Scholar 

  14. L. M. Babiak, W. F. Cherry, S. Fayz, and K. S. Pang. Kinetics of meperidine N-demethylation in the perfused rat liver preparation.Drug Metab. Dispos. 12:698–704 (1984).

    CAS  PubMed  Google Scholar 

  15. K. S. Pang and J. A. Terrell. Conjugation kinetics of acetaminophen by the perfused rat liver preparation.Biochem. Pharmacol. 30:1959–1965 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. M. N. Berry, D. C. Fanning, A. R. Grivell, and P. G. Wallace. Ethanol oxidation by isolated hepatocytes from fed and starved rats and from rats exposed to ethanol, phenobarbitone or 3-amino-triazole. No evidence for a physiological role of a microsomal ethanol oxidation system.Biochem. Pharmacol. 29:2161–2168 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. J. F. Brien and D. J. Hoover. Gas-liquid Chromatographic determination of ethanol and acetaldehyde in tissues.J. Pharmacol. Methods. 4:51–58 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. M. V. St-Pierre, W. F. Lee, C. A. Goresky, and K. S. Pang. The multiple indicator dilution technique for characterization of normal and retrograde perfusions in the once-through rat liver preparation.Hepatology (in press).

  19. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats.J. Pharmacol. Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  20. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  21. K. K. Chan and K. S. Pang. Synthesis of singly2H-,3H-, and14C-and doubly labeled acetaminophen, phenacetin, and p-acetanisidine.J. Labeled Comp. Radiolab. Pharmaceut. 19:321–329 (1982).

    Article  CAS  Google Scholar 

  22. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: the transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. L. Bass. Saturation kinetics in hepatic drug removal: a statistical approach to functional heterogeneity.Am. J. Physiol. 244:G583-G589 (1983).

    CAS  PubMed  Google Scholar 

  24. C. A. Goresky, E. R. Gordon, and G. G. Bach. Uptake of monohydric alcohols by liver: demonstration of a shared enzymic space.Am J. Physiol. 244 (Gastrointest. Liver Physiol. 7):G198-G214 (1983).

    CAS  PubMed  Google Scholar 

  25. C. A. Goresky, G. G. Bach, and C. P. Rose. Effects of saturating metabolic uptake on space profiles and tracer kinetics.Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7):G215-G232 (1983).

    CAS  PubMed  Google Scholar 

  26. J. M. Gonzalez-Fernandez and S. E. Atta, Maximal substrate transport in capillary networks.Microvasc. Res. 5:180–198 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. L. Bass and P. J. Robinson. Effects of capillary heterogeneity on rates of steady state uptake of substances by the intact liver.Microvasc. Res. 22:43–57 (1981).

    Article  CAS  PubMed  Google Scholar 

  28. L. Bass. Heterogeneity within observed regions: physiologic basis and effects on estimation of rates of biodynamic processes.Circulation 72(suppl. IV):47–52 (1985).

    Google Scholar 

  29. K. S. Pang, W. F. Cherry, J. Accaputo, A. J. Schwab, and C. A. Goresky. Combined hepatic arterial-portal venous and hepatic arterial-hepatic venous perfusions to probe the abundance of drug metabolizing activities: Perihepatic venous O-deethylation activity for phenacetin and periportal sulfation activity for acetaminophen in the once-through rat liver preparation.J. Pharmacol. Exp. Ther. 247:690–700 (1988).

    CAS  PubMed  Google Scholar 

  30. D. Cousineau, C. A. Goresky, and C. P. Rose. Blood flow and norepinephrine effects on liver vascular and extravascular volumes.Am. J. Physiol. 244 (Heat Circ. Physiol. 13):H495-H504 (1983).

    CAS  PubMed  Google Scholar 

  31. D. Cousineau, C. A. Goresky, and C. P. Rose. Blood flow and norepinephrine effects on liver vascular and extravascular volumes.Am. J. Physiol. 248 (Heart Circ. Physiol. 17):H186–192, 1985.

    CAS  PubMed  Google Scholar 

  32. S. Keiding and A. Prisholm. Current models of hepatic pharmacokinetics: Flow effects on kinetic constants of ethanol elimination in perfused rat liver.Biochem. Pharmacol. 33:3209–3212 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. S. Keiding, S. Johansen, I. Midtbøll, A. Rabøl, and L. Christiansen. Ethanol Elimination kinetics in human liver and pig liverin vivo.Am. J. Physiol. 237:E316-E324 (1979).

    CAS  PubMed  Google Scholar 

  34. R. W. Brauer, G. F. Leong, R. F. McElroy, and R. J. Holloway. Circulatory pathways in the rat liver as revealed by P32 chromic phosphate colloid uptake in the perfused rat liver.Am. J. Physiol. 184:593–598 (1956).

    CAS  PubMed  Google Scholar 

  35. J. L. Whitsett, P. G. Dayton, and T. L. McNay. The effect of hepatic blood flow on the hepatic removal rate of oxyphenbutazone in the dog.J. Pharmacol. Exp. Ther. 177:246–255 (1971).

    CAS  PubMed  Google Scholar 

  36. S. Keiding and E. Steiness. Flow dependence of propranolol elimination in the perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).

    CAS  PubMed  Google Scholar 

  37. R. Miller and I. F. Oliver. The influence of oxygen tension on theophylline clearance in the rat isolated perfused liver.J. Pharm. Pharmacol. 38:236–238 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. R. W. Brauer, G. F. Leong, R. F. McElroy, Jr., and R. J. Holloway. Hemodynamics of the vascular tree of the isolated rat liver preparation.Am. J. Physiol. 186:537–542 (1956).

    CAS  PubMed  Google Scholar 

  39. R. W. Brauer, G. F. Leong, and R. L. Prescott. Vasomotor activity of the isolated perfused rat liver.Am. J. Physiol. 174:304–312 (1953).

    CAS  PubMed  Google Scholar 

  40. R. W. Brauer. Liver circulation and function.Physiol. Rev. 43:115–213 (1963).

    CAS  PubMed  Google Scholar 

  41. S. Keiding, H. Vilstrup, and L. Hansen. Importance of flow and hematocrit for metabolic function of perfused rat liver.Scand. J. Clin. Lab. Invest. 40:355–359 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. T. Matsumara, F. C. Kauffman, H. Meren, and R. G. Thurman. O2 uptake in periportal and pericentral regions of liver lobule in perfused liver.Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13):G800-G805 (1986).

    Google Scholar 

  43. R. G. Thurman and R. Scholz. Mixed function oxidation in perfused rat liver. The effect of aminopyrine on oxygen uptake.Eur. J. Biochem. 10:459–467 (1973).

    Article  Google Scholar 

  44. F. Ballet, Y. Chretien, C. Rey, and R. Poupon. Norepinephrine: A potential modulator of the hepatic transport of taurocholate. A study in the isolated perfused rat liver.J. Pharmacol. Exp. Ther. 240:303–307, 1987.

    CAS  PubMed  Google Scholar 

  45. K. S. Pang. The effect of intercellular distribution of drug metabolizing enzymes on the kinetics of stable metabolite formation and elimination by liver: First-pass effects.Drug Metab. Rev. 14:61–76 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. K. S. Pang, P. Kong, J. A. Terrell, and R. E. Billings. Metabolism of acetaminophen and phenacetin by isolated rat hepatocytes. A system in which the spatial organization inherent in the liver is disrupted.Drug Metab. Dispos. 13:42–50 (1985).

    CAS  PubMed  Google Scholar 

  47. K. J. Isselbacher and E. A. Carter. Ethanol metabolism: Oxidative and peroxidative mechanisms.Drug Metab. Dispos. 1:449–280 (1973).

    CAS  PubMed  Google Scholar 

  48. T. Kashiwagi, S. Ji, J. J. Lemasters, and R. G. Thurman. Rates of alcohol dehydrogenase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver.Mol. Pharmacol. 21:438–443 (1982).

    CAS  PubMed  Google Scholar 

  49. K. S. Pang and J. R. Gillette. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin.J. Pharmacol. Exp. Ther. 207:178–194 (1978).

    CAS  PubMed  Google Scholar 

  50. J. Baron, R. A. Redick, and F. P. Guengerich. An immunohistochemical study on the localizations and distributions of phenobarbital and 3-methylcholanthrene-inducible cytochrome P-450 within the livers of untreated rats.J. Biol. Chem. 256:15200–15203 (1982).

    Google Scholar 

  51. R. A. Weisiger, C. A. Mendel, and R. R. Cavalieri. The hepatic sinusoid is not well-stirred: Estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver.J. Pharm. Sci. 75:233–237 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. J. J. Gumicio, D. L. Miller, M. D. Krauss, and C. C. Zanolli. Transport of fluorescent compounds into hepatocytes and the resultant zonal labeling of the hepatic acinus in the rat.Gastroenterology 80:639–646 (1981).

    Google Scholar 

  53. D. L. Gumicio, J. J. Gumicio, J. A. P. Wilson, C. Cutter, M. Krauss, R. Caldwell, and E. Chen. Albumin influences sulfobromophthalein transport by hepatocytes of each acinar zone.Am. J. Physiol. 246:G86-G95 (1984).

    Google Scholar 

  54. T. Kashiwagi, K. Kimura, T. Suematsu, M. Schichiri, T. Kamada, and H. Abe. Heterogeneous intrahepatic distribution of blood flow in humans.Eur. J. Nucl. Med. 6:545–549 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by U.S. Health and Human Services (GM-38250) and the Medical Research Council of Canada (MA-9104, MA-9765), and Travel Grants from the Ontario-Quebec Exchange Program from the Ontario Ministry of Colleges and Universities. W. F. Lee was a recipient of the Medical Research Council summer studentship at the University of Toronto. A. J. Schwab was a Deutsche Forchungsgemeinschaft Research Fellow. K. S. Pang is a recipient of a Faculty Development Award, and C. A. Goresky of a Career Investigatorship, MRC, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, K.S., Lee, WF., Cherry, W.F. et al. Effects of perfusate flow rate on measured blood volume, disse space, intracellular water space, and drug extraction in the perfused rat liver preparation: Characterization by the multiple indicator dilution technique. Journal of Pharmacokinetics and Biopharmaceutics 16, 595–632 (1988). https://doi.org/10.1007/BF01062014

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062014

Key words

Navigation