Skip to main content
Log in

Moment analysis of drug disposition in kidney. VI: Assessment ofin vivo transmembrane transport ofp-aminohippurate in tubular epithelium

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

This paper describes a novel method to assess the antiluminal membrane (ALM) and luminal membrane (LM) transport in vivo across renal tubular epithelial cells. The method is based upon a noncompartmental moment analysis of the plasma concentration and urinary excretion rate curves following renal artery injection. Quantitative relationships are represented between the noncompartmental parameters (clearance, volume of distribution, and the mean transit time) and the first-order rate constants associated with transmembrane transport processes. The in vivo transepithelial transport of [14C]p -aminohippurate (PAH) was examined using the rat kidney in the absence or presence of various plasma concentrations of unlabeled PAH, cefazolin, and methotrexate. The tubular secretion intrinsic clearance was reduced with an increase in the plasma concentration of concurrent unlabeled organic onions. The distribution volume of PAH in the kidney decreased in association with a decrease in the amount of PAH secreted, whereas the mean transepithelial (artery-to-lumen) transit time (¯Tcell) remained constant. These findings indicate that ALM transport is a capacity-limited process determining the amount of tubular secretion, and that LM transport is linear over the concentration range examined and independent of the amount of secretion. The contribution of ALM and LM transport to transcellular transport was first clarified in vivo. The present method will be useful for analyzing the transmembrane transport processes in vivo for highly diffusible substances in the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. V. Møller and I. Sheikh. Renal organic anion transport system: pharmacological, physiological, and biochemical aspects.Pharmacol. Rev. 34:315–358 (1983).

    Google Scholar 

  2. J. B. Pitchard. Luminal and peritubular steps in renal transport ofp-aminohippurate.Biochim. Biophys. Acta 906:295–308 (1987).

    Article  Google Scholar 

  3. J. L. Kinsella, P. D. Holohan, N. I. Pessah, and C. R. Ross. Transport of organic ions in renal cortical luminal and antiluminal membrane vesicles.J. Pharmacol. Exp. Ther. 209:443–450 (1979).

    CAS  PubMed  Google Scholar 

  4. R. Hori, M. Takano, T. Okano, S. Kitazawa, and K. Inui. Mechanisms ofp-amino-hippurate transport by brush-border and basolateral membrane vesicles isolated from rat kidney cortex.Biochim. Biophys. Acta 692:97–100 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. K. Inui, M. Takano, T. Okano, and R. Hori. Role of chloride on carrier-mediated transport of p-aminohippurate in rat renal basolateral membrane vesicles.Biochim. Biophys. Acta 855:425–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. J. W. Blomstedt and P. S. Aronson.pH Gradient-stimulated transport of urate andp- aminohippurate in dog renal microvillus membrane vesicles.J. Clin. Invest. 65:931–934 (1980).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. A. M. Kahn. Urate transport via anion exchange in dog renal microvillus membrane vesicles.Am. J. Physiol. 244:F56-F63 (1983).

    CAS  PubMed  Google Scholar 

  8. T. G. Steffens, P. D. Holohan, and C. R. Ross. Operational modes of the organic anion exchanger in canine renal brush-border membrane vesicles.Am. J. Physiol. 256:F596-F609 (1989).

    CAS  PubMed  Google Scholar 

  9. E. C. Foulkes. Movement of p-aminohippurate between lumen and cells of renal tubule.Am. J. Physiol. 232:F424-F428 (1977).

    CAS  PubMed  Google Scholar 

  10. W. H. Dantzler and S. K. Bentley. Effects of inhibitors in lumen on PAH and urate transport by isolated renal tubules.Am. J. Physiol. 236:F379-F386 (1979).

    CAS  PubMed  Google Scholar 

  11. W. H. Dantzler and S. K. Bentley. Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules.Am. J. Physiol. 238:F16-F25 (1980).

    CAS  PubMed  Google Scholar 

  12. R. Hori, Y.-L. He, Y. Saito, A. Kamiya, and Y. Tanigawara. Moment analysis of drug disposition in kidney. V:In vivo transepithelial transport of p-aminohippurate in rat kidney.J. Pharmacokin. Biopharm. 19:51–70 (1991).

    Article  CAS  Google Scholar 

  13. R. Hori, A. Kamiya, Y. Saito, and Y. Tanigawara. Kidney perfusion systems in drug disposition studies. In D. D. Breimer and P. Speiser (eds.),Topics in Pharmaceutical Sciences 1987, Elsevier, Amsterdam, 1987, pp. 211–219.

    Google Scholar 

  14. R. Hori, Y. Tanigawara, Y. Saito, Y. Hayashi, T. Aiba, K. Okumura, and A. Kamiya. Moment analysis of drug disposition in kidney: transcellular transport kinetics ofp-aminohippurate in isolated perfused rat kidney.J. Pharm. Sci. 77:471–476 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. A. Kamiya, Y. Tanigawara, Y. Saito, Y. Hayashi, T. Aiba, K. Inui, and R. Hori. Moment analysis of drug disposition in kidney. II: urine pH dependent tubular secretion of tetraethylammonium in the isolated perfused rat kidney.J. Pharm. Sci. 79:692–697 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Tanigawara, Y. Saito, T. Aiba, K. Ohoka, A. Kamiya, and R. Hori. Moment analysis of drug disposition in kidney. III: transport ofp-aminohippurate and tetraethylammonium in the perfused kidney isolated from uranyl nitrate-induced acute renal failure rats.J. Pharm. Sci. 79:249–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. C. A. Goresky, W. H. Ziegler, and G. G. Bach. Capillary exchange modeling.Circ. Res. 27:739–764 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. C. J. Lumsden and M. Silverman. Exchange of multiple indicators across renal-like epithelia: a modeling study of six physiological regimens.Am. J. Physiol. 251:F1073-F1089 (1986).

    CAS  PubMed  Google Scholar 

  19. M. Silverman, C. Whiteside, C. J. Lumsden, and H. Steinhart.In vivo indicator dilution kinetics of PAH transport in dog kidney.Am. J. Physiol. 256:F255-F265 (1989).

    CAS  PubMed  Google Scholar 

  20. M. Takano, T. Okano, K-I. Inui, and R. Hori. Transport of cephalosporin antibiotics in rat renal basolateral membranes.J. Pharm. Pharmacol. 41:795–796 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. C. H. Nightingale, D. S. Greene and R. Quintiliani. Pharmacokinetics and clinical use of cephalosporin antibiotics.J. Pharm. Sci. 64:1899–1927 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. K. C. Huang, B. A. Wenczak, and Y. K. Liu. Renal tubular transport of methotrexate in the rhesus monkey and dog.Cancer Res. 39:4843–4848 (1979).

    CAS  PubMed  Google Scholar 

  23. T. S. Chen, B. A. Wenczax, and K. C. Huang. Transport of methotrexate in cortical slices of monkey kidney: effect of organic anions and vincristine.J. Pharmacol. Exp. Ther. 226:645–649 (1983).

    CAS  PubMed  Google Scholar 

  24. W. M. Williams, T. S. Chen, and K. C. Huang. Effect of penicillin on the renal tubular secretion of methotrexate in the monkey.Cancer Res. 44:1913–1917 (1984).

    CAS  PubMed  Google Scholar 

  25. J. H. Zar.Biostatistical Analysis, 2nd. ed., Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 139–141.

    Google Scholar 

  26. A. D. Bains, C. W. Gottschalk, and W. E. Lassiter. Microinjection study of p-aminohippurate excretion by rat kidneys.Am. J. Physiol. 214:703–709 (1968).

    Google Scholar 

  27. R. P. Wedeen and B. Weiner. Extraction of hippuran-131I and PAH-3H from red blood cells and plasma in the rat.Am. J. Physiol. 217:838–844 (1969).

    CAS  PubMed  Google Scholar 

  28. J. L. McNay, S. Rosello, and P. G. Dayton. Effects of azotemia on renal extraction and clearance of PAH and TEA.Am. J. Physiol. 230:901–906 (1976).

    CAS  Google Scholar 

  29. G. W. Roberts, K. B. Larson, and E. E. Spaeth. The interpretation of mean transit time measurements for multiphase tissue systems.J. Theoret. Biol. 39:447–475 (1973).

    Article  CAS  Google Scholar 

  30. R. Kirsch, G. Fleischner, K. Kamisaka, and I. M. Arias. Structura! and functional studies of ligandin, a major renal organic anion-binding protein.J. Clin. Invest. 55:1009–1019 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YL., Tanigawara, Y., Kamiya, A. et al. Moment analysis of drug disposition in kidney. VI: Assessment ofin vivo transmembrane transport ofp-aminohippurate in tubular epithelium. Journal of Pharmacokinetics and Biopharmaceutics 19, 667–690 (1991). https://doi.org/10.1007/BF01080873

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01080873

Key words

Navigation