Skip to main content
Log in

A dispersion model of hepatic elimination: 2. Steady-state considerations-influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The dispersion model of hepatic elimination is based on the distribution of residence times of blood elements within the liver. The model has two asymptotic solutions corresponding to the “wellstirred” model (complete mixing of blood elements) and the “parallel-tube” model (no variation in residence times of blood elements). The steady-state form of the dispersion model relevant to pharmacokinetic analysis is developed and explored with respect to changes in blood flow, in binding within blood, and in hepatocellular enzyme activity. Literature data are used to evaluate discrepancies among the predictions of the dispersion, well-stirred, and tube models. It is concluded that the dispersion model is consistent-with the data. The limitations of steady-state perfusion experiments to estimate the residence time distribution of blood elements within the liver are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  2. K. S. Pang and M. Rowland. Hepatic clearance of drugs II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5:655–680 (1977).

    Article  CAS  Google Scholar 

  3. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well-stirred” and “parallel-tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 205:465–470 (1978).

    CAS  PubMed  Google Scholar 

  5. M. Rowland, D. Leitch, G. Fleming, and B. Smith. Protein binding and hepatic clearance: Discrimination between models of hepatic clearance with diazepam, a drug of high intrinsic clearance, in the isolated perfused rat liver preparation.J. Pharmacokin. Biopharm. 12:129–147 (1984).

    Article  CAS  Google Scholar 

  6. J. J. Gumucio, D. L. Miller, M. D. Krauss, and C. C. Zønolli. Transport of fluorescent compounds into hepatocytes and the resultant zonal labelling of the hepatic acinus in the rat.Gastroenterology 80:639–646 (1981).

    CAS  PubMed  Google Scholar 

  7. L. Bass, P. J. Robinson, and A. J. Bracken. Hepatic elimination of flowing substances: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  8. E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: Distributed modelling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    CAS  PubMed  Google Scholar 

  9. D. J. Morgan. Models of hepatic drug elimination: A response.J. Pharm. Sci. 72:1230 (1983).

    Article  Google Scholar 

  10. W. A. Coburn. Albumin binding and hepatic uptake. The importance of model selection-A response.J. Pharm. Sci. 72:1233 (1983).

    Article  Google Scholar 

  11. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  12. M. S. Roberts and M. Rowland. Hepatic elimination-Dispersion model.J. Pharm. Sci. 74:585–587 (1984).

    Google Scholar 

  13. J. F. Wehner and R. M. Wilhelm. Boundary conditions of flow reactor.Chem. Eng. Sci. 6:89–93 (1956).

    Article  CAS  Google Scholar 

  14. O. Levenspiel.Chemical Reaction Engineering, Wiley, New York, 1972, pp. 253–315.

    Google Scholar 

  15. P. Veng-Pederson. Curve fitting and modelling in pharmacokinetics and some practical experience with NONLIN and new program FUNFIT.J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  16. R. W. Brauer, G. F. Leong, R. F. McEIroy, Jr., and R. J. Holloway. Circulatory pathways in the rat liver as revealed by32P chromic phosphate colloid uptake in the isolated perfused liver preparation.Am. J. Physiol. 184:593–598 (1956).

    CAS  PubMed  Google Scholar 

  17. T. D. Yih, A. W. Boxmen, and J. M. van Rossum. Influence of liver blood flow on the metabolic clearance of barbiturates in the intact rat and in the isolated liver.Pharm. Weekb. 110:1236–1240 (1975).

    CAS  Google Scholar 

  18. T. L. Whitsett, P. G. Dayton, and J. L. McNay. The effect of hepatic blood flow on the hepatic removal rate of oxyphenbutazone in the dog.J. Pharmacol. Exp. Ther. 177:246–255 (1971).

    CAS  PubMed  Google Scholar 

  19. P. V. Dankwerts. Continuous flow systems. Distribution of residence times.Chem. Eng. Sci. 2:1–13 (1953).

    Article  Google Scholar 

  20. D. L. Miller, C. S. Zanolli, and J. J. Gumucio. Quantitative morphology of the sinusoids of the hepatic acinus. Quantimet analysis of rat liver.Gastroenterology 76:965–969 (1979).

    CAS  PubMed  Google Scholar 

  21. A. Koo, I. Y. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Q. J. Exp. Physiol. 60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  22. J. J. Gumucio. Functional and anatomic heterogeneity in the liver acinus: Impact on transport.Am. J. Physiol. 245:G578-G582 (1983).

    Google Scholar 

  23. E. L. Forker and B. A. Luxon. Analyzing tracer disappearance curves to study hepatic transport kinetics.Am. J. Physiol. 244:G573-G577 (1983).

    CAS  PubMed  Google Scholar 

  24. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volume.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  25. A. B. Ahmad. Ph.D. Thesis, University of Bath, 1982.

  26. A. Koo and I. Y. S. Liang. β-Adrenoreceptors and rat liver microcirculation.Clin. Exp. Pharmacol. Physiol. 6:403–407 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. T. Yipintsoi and J. B. Bassingwaighte. Circulatory transport of iodoantipyrine and water in the isolated dog heart.Circ. Res. 27:461–477 (1970).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. E. A. Ebach and R. R. White. Mixing of fluids flowing through beds of packed solids.Am. Inst. Chem. Eng. J. 4:161–169 (1958).

    Article  CAS  Google Scholar 

  29. B. J. Zinolinski, H. Eyring, and C. B. Reese. Diffusion and membrane permeability.J. Phys. Colloid. Chem. 53:1426–1453 (1949).

    Article  Google Scholar 

  30. G. L. Amidon, J. Kou, R. L. Elliott, and E. N. Lightfoot. Analysis of models for determining intestinal wall permeabilities.J. Pharm. Sci. 69:1369–1373 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. E. G. Lovering and D. B. Black. Diffusion layer effects of phenylbutazone through polydimethylsiloxane.J. Pharm. Sci. 63:1399–1402 (1974).

    Article  CAS  PubMed  Google Scholar 

  32. D. G. Thurman and F. C. Kauffman. Factors regulating drug metabolism in intact hepatocytes.Pharmacol. Rev. 31:229–251 (1979).

    CAS  PubMed  Google Scholar 

  33. C. A. Goresky. Kinetic interpretation of hepatic multiple indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).

    CAS  PubMed  Google Scholar 

  34. L. Bass and P. J. Robinson. How small is the functional variability of liver sinusoids.J. Theor. Biol. 81:761–769 (1979).

    Article  CAS  PubMed  Google Scholar 

  35. P. D. Richardson and P. G. Withrington. Liver blood flow: II. Effects of drugs and hormones on liver blood flow.Gastroenterology 81:356–375 (1981).

    CAS  PubMed  Google Scholar 

  36. M. Chakravorti and J. Tripod. The action in the perfused liver of acetylcholine, sympathomimetic substances and local anaesthestics.J. Physiol. (Lond.)97:316–329 (1940).

    Article  Google Scholar 

  37. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the “well-stirred” and “parallel-tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. D. J. Morgan and K. Raymond. Use of unbound drug concentrations in blood to discriminate between two models of hepatic drug elimination.J. Pharm. Sci. 71:600–602 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. E. L. Forker and B. A. Luxon. Albumin binding and hepatic uptake: The importance of model selection.J. Pharm. Sci. 72:1322–1323 (1983).

    Article  Google Scholar 

  40. W. A. Coburn. Albumin does not mediate the removal of taurocholate by the rat liver.J. Pharm. Sci. 71:373 (1982).

    Article  Google Scholar 

  41. E. L. Forker and B. A. Luxon. Albumin helps mediate removal of taurocholate by rat liver.J. Clin. Invest. 67:1517–1522 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. L. R. Schwartz, R. Burr, M. Schwenk, E. Pfaff, and H. Greim. Uptake of taurocholic acid into isolated rat liver cells.Eur. J. Biochem. 55:617–623 (1975).

    Article  Google Scholar 

  43. M. S. Anwer, R. Kroker, and D. Hegner. Effect of albumin on bile acid uptake by isolated rat hepatocytes. Is there a common bile acid carrier?Biochem. Biophys. Res. Commun. 13:63–71 (1976).

    Article  Google Scholar 

  44. T. Iga and C. D. Klassen. Uptake of bile acids by isolated rat hepatocytes.Biochem. Pharmacol. 31:211–216 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. R. K. Ockner, R. A. Weissiger, and J. L. Gollan. Hepatic uptake of albumin bound substances: Albumin receptor concepts.Am. J. Physiol. 245:G13-G18 (1983).

    CAS  PubMed  Google Scholar 

  46. D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between venous equilibrium and sinusoidal models of hepatic drug elimination in the isolated perfused rat liver by perturbation of propranoiol protein binding.J. Pharmacol. Exp. Ther. 229:522–526 (1984).

    CAS  PubMed  Google Scholar 

  47. S. Keiding and E. Steiness. Flow dependence of propranolol elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).

    CAS  PubMed  Google Scholar 

  48. A. Rane, G. R. Wilkinson, and D. G. Shand, Prediction of hepatic extraction ratio fromin vitro measurement of intrinsic clearance.J. Pharmacol. Exp. Ther. 200:420–424 (1977).

    CAS  PubMed  Google Scholar 

  49. J. M. Anderson, A. C. Anderson, and L. S. Iben. Hepatic uptake of propranolol.J. Pharmacol. Exp. Ther. 78:172–180 (1978).

    Google Scholar 

  50. A. Koo and I. Y. S. Liang. β2-Adrenoceptors in rat liver vasculature.din. Exp. Pharmacol. Physiol. 6:403–407 (1979).

    Article  CAS  Google Scholar 

  51. J. J. Gumucio and D. L. Miller. Function implications of liver cell heterogeneity.Gastroenterology 80:393–403 (1981).

    CAS  PubMed  Google Scholar 

  52. G. R. Wilkinson and D. G. Shand. Commentary. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  53. R. E. Billings, R. E. McMahon, J. Ashmore, and S. R. Wagle. The metabolism of drugs in isolated hepatocytes. A comparison ofin vivo drug metabolism and drug metabolism in subcellular liver fractions.Biochem. Pharmacol. 5:516–526 (1977).

    Google Scholar 

  54. N. Tsuri, R. R. Erickson, and J. L. Holtzman. The metabolism of phenytoin in isolated hepatocytes and hepatic microsomes from male rats.J. Pharmacol. Exp. Ther. 222:658–661 (1982).

    Google Scholar 

  55. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver. The transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. A. L. Jones, G. T. Hradek, R. H. Renston, K. Y. Weng, G. Karlagancs, and G. Paumgartner. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative.Am. J. Physiol. 238:G233-G237 (1980).

    CAS  PubMed  Google Scholar 

  57. J. R. Pearson. A note on the “Dankwerts” boundary conditions for continuous flow reaction.Chem. Eng. Sci. 10:281–285 (1959).

    Article  CAS  Google Scholar 

  58. A. Rane, G. R. Wilkinson, and D. G. Shand. Prediction of hepatic extraction ratio fromin vitro measurements of intrinsic clearance.J. Pharmacol. Exp. Ther. 200:420–424 (1977).

    CAS  PubMed  Google Scholar 

  59. L. Bass. Saturation kinetics in hepatic drug removal: A statistical approach to functional heterogeneity.Am. J. Physiol. 244:G583-G589 (1983).

    CAS  PubMed  Google Scholar 

  60. L. Bass. Flow dependence of first-order uptake of substances by heterogeneous perfused organs.J. Theor. Biol. 86:365–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  61. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic drug clearance model: Comparison among the distributed, parallel tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.S., Rowland, M. A dispersion model of hepatic elimination: 2. Steady-state considerations-influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity. Journal of Pharmacokinetics and Biopharmaceutics 14, 261–288 (1986). https://doi.org/10.1007/BF01106707

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01106707

Key words

Navigation