Skip to main content
Log in

Actions of melatonin in the reduction of oxidative stress

A review

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Melatonin was discovered to be a direct free radical scavenger less than 10 years ago. Besides its ability to directly neutralize a number of free radicals and reactive oxygen and nitrogen species, it stimulates several antioxidative enzymes which increase its efficiency as an antioxidant. In terms of direct free radical scavenging, melatonin interacts with the highly toxic hydroxyl radical with a rate constant equivalent to that of other highly efficient hydroxyl radical scavengers. Additionally, melatonin reportedly neutralizes hydrogen peroxide, singlet oxygen, peroxynitrite anion, nitric oxide and hypochlorous acid. The following antioxidative enzymes are also stimulated by melatonin: superoxide dismutase, glutathione peroxidase and glutathione reductase. Melatonin has been widely used as a protective agent against a wide variety of processes and agents that damage tissues via free radical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Absi E, Ayala A, Machado A, Parrado J. Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of complex I of the mitochondrial respiratory chain. J Pineal Res 29:40–47;2000.

    Google Scholar 

  2. Adams OP Jr, Klaidman LK, Leung AC. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radical Biol Med 15:181–186;1993.

    Google Scholar 

  3. Alacaron de la Lastra C, Motilva V, Martin MJ, Nieto A, Barranco MD, Cabeza J, Herrerias JM. Protective effect of melatonin on indomethacin-induced gastric injury in rats. J Pineal Res 26:101–107;1999.

    Google Scholar 

  4. Antolin I, Obstet B, Burkhardt S, Hardeland R. Antioxidative protection in a high-melatonin organism: The dinoflagellateGonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J Pineal Res 23:182–190;1997.

    Google Scholar 

  5. Antolin I, Rodriguez C, Sainz RM, Mayo JC, Aria H, Kotter M, Rodriquez-Colungo MJ, Toliva D, Menendez-Pelaez A. Neurohormone melatonin prevents damage: Effect on gene expression for antioxidative enzymes. FASEB J 10:882–890;1996.

    Google Scholar 

  6. Antunes F, Barclay LRC, Ingold KU, King M, Norris JQ, Scaiano JC, Xi F. On the antioxidant activity of melatonin. Free Radical Biol Med 26:117–128;1999.

    Google Scholar 

  7. Bandyopadhyay D, Biswas K, Bandyopadhyay V, Reiter RJ, Banerjee RK. Melatonin protects against stress-induced gastric lesions by scavenging the hydroxyl radical. J Pineal Res 29:143–151;2000.

    Google Scholar 

  8. Barlow-Walden LR, Reiter RJ, Abe M, Pablos M, Menendez-Pelaez A, Chen LD, Poeggeler B. Melatonin stimulates brain glutathione peroxidase activity. Neurochem Int 26:447–502;1995.

    Google Scholar 

  9. Beckman JS, Chen J, Ischiropoulos H, Crow JP. Oxidative chemistry of peroxynitrite. Methods Enzymol 233:299–240;1994.

    Google Scholar 

  10. Bettahi I, Pozo D, Osuna C, Reiter RJ, Acuña-Castroviejo D, Guerrero JM. Melatonin reduces nitric oxide synthase activity in rat hypothalamus. J Pineal Res 20:205–210;1996.

    Google Scholar 

  11. Blanchard B, Pompom D, Ducrocq C. Nitrosation of melatonin by nitric oxide and peroxynitrite. J Pineal Res 29:184–193;2000.

    Google Scholar 

  12. Borg DC. Oxygen free radical and tissue injury. In: Tan M, Samson F, eds. Oxygen Free Radicals and Tissue Injury. Boston, Birkhäuser, 12–53;1993.

    Google Scholar 

  13. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: Determination of antiradical efficiencies. Methods Enzymol 186:343–355;1990.

    Google Scholar 

  14. Boveris A, Cadenas E. Cellular sources and steady-state levels of reactive oxygen species. In: Clerch LB, Massaro DJ, eds. Oxygen, Gene Expression and Cellular Function. New York, Marcel Dekker, 1–25;1997.

    Google Scholar 

  15. Brömme HJ, Mörke W, Peschke E, Ebelt H, Peschke D. Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J Pineal Res, in press.

  16. Cagnoli CM, Atabay C, Kharlamova E, Manev H. Melatonin protects neurons from singlet oxygen-induced apoptosis. J Pineal Res 18:222–226;1995.

    Google Scholar 

  17. Ceraulo L, Ferrugia M, Tesoriere L, Segreto S, Livera MA, Liveri TV. Interactions of melatonin with membrane models: Portioning of melatonin in AOT and lecithin reversed unicells. J Pineal Res 26:108–112;1999.

    Google Scholar 

  18. Chan TY, Tang PL. Characterization of the antioxidant effects of melatonin and related indoleamines in vitro. J Pineal Res 20:187–191;1996.

    Google Scholar 

  19. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian tissues. Physiol Rev 59:527–605;1979.

    Google Scholar 

  20. Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA. Potent neuroprotective properties against Alzheimer β-amyloid by an endogenous melatonin-related structure, indole-3-priopeionic acid. J Biol Chem 274:21937–21942;1999.

    Google Scholar 

  21. Conti A, Conconi S, Hertnes E, Skwarlo-Sonta K, Markowska M, Maestroni GJM. Melatonin synthesis in mouse and human bone marrow. J Pineal Res, in press.

  22. Cuzzocrea S, Costantino G, Mazzon E, Micoli A, De Sarro A, Caputi AP. Beneficial effects of melatonin in a rat model of splanchnic artery occlusion and reperfusion. J Pineal Res 28:52–63;2000.

    Google Scholar 

  23. Cuzzocrea S, Tan DX, Costantino G, Mazzon E, Caputi AP, Reiter RJ. The protective role of endogenous melatonin in carrageenan-induced pleurisy in the rat. FASEB J 13:1930–1938;1999.

    Google Scholar 

  24. Cuzzocrea S, Zingarilli B, Costantino G, Caputi AP. Protective effect of melatonin in nonseptic shock model induced by zymosan in the rat. J Pineal Res 25:24–33;1998.

    Google Scholar 

  25. Dellegar SM, Murphy SA, Bourne AE, Di Cesare JC, Purser GH. Identification of factors affecting the rate of deactivation of hypochlorous acid by melatonin. Biochem Biophys Res Commun 257:431–439;1999.

    Google Scholar 

  26. Ebelt H, Peschke D, Brömme HJ, Mörke W, Blume R, Peschke E. Influence of melatonin on free radical-induced changes in rat pancreatic beta cells in vitro. J Pineal Res 28:65–72;2000.

    Google Scholar 

  27. El-Sokkary GH, Reiter RJ, Cuzzocrea S, Caputi AP, Hassanein AMM, Tan DX. Role of melatonin in reduction of lipid peroxidation and peroxynitrite formation in non-septic shock induced by zymosan. Shock 12:402–408;1999.

    Google Scholar 

  28. Escames F, Guerrero JM, Reiter RJ, Garcia JJ, Muñoz-Hoyos A, Ortiz GG, Oh CS. Melatonin and vitamin E limit nitric oxide-induced lipid peroxidation in rat brain homogenates. Neurosci Lett 230:147–150;1997.

    Google Scholar 

  29. Espinar A, Garcia-Oliva A, Isorna EM, Quesada A, Prada FA, Guerrero JM. Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo. J Pineal Res 28:81–88;2000.

    Google Scholar 

  30. Garcia JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Muñoz-Hoyos A. Melatonin presents changes in microsomal membran fluidity during induced lipid peroxidation. FEBS Lett 408:297–308;1997.

    Google Scholar 

  31. Garcia JJ, Reiter RJ, Ortiz GG, Oh CS, Tang K, Yu BP, Escames G. Melatonin enhances tamoxifen's ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membr Biol 162:59–65;1998.

    Google Scholar 

  32. Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabo C. Melatonin as a scavenger of peroxynitrite. Life Sci 60:PL169-PL174;1997.

    Google Scholar 

  33. Guerrero JM, Reiter RJ, Ortiz GG, Pablos MI, Sewerynek E, Chuang JI. Melatonin prevents increases in neural nitric oxide and cyclic GMP production after transient brain ischemia and reperfusion in the Mongolian gerbil (Meriones unguiculatus). J Pineal Res 23:24–31;1997.

    Google Scholar 

  34. Hara M, Iigo M, Okatani-Kaneko R, Nakamura N, Suzuki T, Reiter RJ, Hirata K. Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol Signals 6:90–100;1997.

    Google Scholar 

  35. Hardeland R. New actions of melatonin and their relevance to biometeorology. Int J Biometeorol 41:47–57;1997.

    Google Scholar 

  36. Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uria H, Behrmann G, Wolf R, Meyer TJ, Reiter RJ. On the primary function of melatonin in evolution: Mediation of photoperiodic signals in a unicell, photooxidation and scavenging of free radicals. J Pineal Res 18:104–111;1995.

    Google Scholar 

  37. Hardeland R, Reiter RJ, Poeggeler B, Tan DX. The significance of the metabolism of the neurohormone melatonin: Antioxidant protection and formation of bioactive substances. Neurosci Biobehav Res 17:347–357;1993.

    Google Scholar 

  38. Harris ED. Regulation of antioxidant enzymes. FASEB J 6:2675–2683;1992.

    Google Scholar 

  39. Hasegawa E, Takeshige K, Oishi R, Murai Y, Minakami S. 1-methyl-4-phenyl-pyridium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055;1990.

    Google Scholar 

  40. Hassan HM. Cytotoxicity of oxyradicals and the evolution of superoxide dismutases. In: Clerch LB, Massaro DJ, eds. Oxygen, Gene Expression and Cellular Function. New York, Marcel Dekker, 27–47;1997.

    Google Scholar 

  41. Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kanedo R, Hara M, Suzuki T, Reiter RJ. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Molec Biol Int 35:245–251;1995.

    Google Scholar 

  42. Ianas O, Olivescu R, Badescu I. Melatonin involvement in oxidative processes. Rom J Endocrinol 29:117–123;1991.

    Google Scholar 

  43. Jain A, Martensson J, Stole E, Auld PAM, Meister A. Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917;1991.

    Google Scholar 

  44. Khaldy H, Escames G, Leon J, Vives F, Luna JD, Acuña-Castroviejo D. Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during autooxidation in vitro. J Pineal Res 29:100–107;2000.

    Google Scholar 

  45. Landrick S. Vitamin E. In: Baskin SI, Salem H, eds. Oxidants, Antioxidants, and Free Radicals. Washington, Taylor & Francis, 79–94;1997.

    Google Scholar 

  46. Larson RA. Antioxidant mechanisms of secondary natural products. In: Ahmad S, ed. Oxidative Stress and Antioxidant Defenses in Biology. New York, Chapman & Hall, 210–237;1995.

    Google Scholar 

  47. Li XJ, Zhang LM, Gu J, Zhang AZ, Sun FY. Melatonin decreases production of hydroxyl radical during ischemia-reperfusion. Acta Pharmacol Sin 18:394–396;1997.

    Google Scholar 

  48. Liochev SI, Fridovich I. The role of superoxide in the production of hydroxyl radical: In vitro and in vivo. Free Radical Biol Med 16:29–33;1994.

    Google Scholar 

  49. Livrea MA, Tesoriere L, D'Arpa D, Morreale M. Reaction of melatonin with lipoperoxyl radicals in phospholipid bilayers. Free Radical Biol Res 23:706–711;1997.

    Google Scholar 

  50. Longoni B, Salgo MG, Pryor WA, Marchiafava PL. Effects of melatonin on lipid peroxidation induced by oxgen radicals. Life Sci 62:853–859;1998.

    Google Scholar 

  51. Lopez-Gonzalez MA, Guerrero JM, Rojas F, Delgado F. Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. J Pineal Res 28:73–80;2000.

    Google Scholar 

  52. Mahal HS, Sharma HS, Mukherjee T. Antioxidant properties of melatonin: A pulse radiolysis study. Free Radical Biol Med 26:557–565;1999.

    Google Scholar 

  53. Mao GD, Thomas PD, Lopaschuk GD, Poznansky MJ. Superoxide dismutase (SOD)-catalase conjugates. J Biol Chem 268:416–620;1993.

    Google Scholar 

  54. Marklund SL, Westman Ng, Lundgren E, Roos G. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic cell lines and normal human tissues. Cancer Res 42:1955–1961;1982.

    Google Scholar 

  55. Marshall KA, Reiter RJ, Poeggeler B, Aruoma OI, Halliwell B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radical Biol Med 21:307–315;1996.

    Google Scholar 

  56. Martin M, Macias M, Escames G, Reiter RJ, Agapito MT, Ortiz GG, Acuña-Castroviejo D. Melatonin-induced increased activity of the respiratory chain complex I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 28:242–248;2000.

    Google Scholar 

  57. Matuszek Z, Reszka KJ, Chignell CF. Reaction of melatonin and related indoles with hydroxyl radicals: ESR and spin trapping investigation. Free Radical Biol Med 23:367–372;1997.

    Google Scholar 

  58. Meister A, Anderson ME. Glutathione. Ann Rev Biochem 52:711–760;1993.

    Google Scholar 

  59. Montilla Lopez P, Tunez I, Munoz de Agueda MC, Cabrera E, Montilla MC, Plascencia J, de la Torre EJ. Protective effect of melatonin against oxidative stress induced by ligature of extra-hepatic biliary duct in rats: Comparison with the effect of s-adenosyl-L-methionine. J Pineal Res 28:143–149;2000.

    Google Scholar 

  60. Morishima I, Okumura K, Matsui H, Kaneko S, Numaguchi Y, Karvakami K, Mokuno S, Hayakawa M, Toki Y, Ito T, Hayakawa T. Zinc accumulation in adriamycin-induced cardiomyopathy in rats: Effects of melatonin, a cardioprotective agent. J Pineal Res 26:204–210;1999.

    Google Scholar 

  61. Noda Y, Mori A, Liburty R, Packer L. Melatonin and its precursors scavenge nitric oxide. J Pineal Res 27:159–163;1999.

    Google Scholar 

  62. Ohta Y, Kongo M, Sasoki E, Nishida K, Ishiguro I. Therapeutic effect of melatonin on carbon tetrachloride-induced acute liver injury in rats. J Pineal Res 28:119–126;2000.

    Google Scholar 

  63. Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tumura S, Sagara Y. Maternal-fetal transfer of melatonin in pregnant women near term. J Pineal Res 25:129–134;1998.

    Google Scholar 

  64. Okatani Y, Wakatsuki A, Kaneda C. Melatonin increases activities of glutathione peroxidase and superoxide dismutase in fetal rat brain. J Pineal Res 28:89–96;2000.

    Google Scholar 

  65. Okatani Y, Wakasuki A, Morioka N, Watanabe K. Melatonin inhibits the vasorelaxant action of peroxynitrite in human umbilical artery. J Pineal Res 27:111–115;1999.

    Google Scholar 

  66. Olanow CW, Talton WG. Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144;1999.

    Google Scholar 

  67. Pablos MI, Agapito MT, Gutierrez R, Recio JM, Reiter RJ, Barlow-Walden LR, Acuña-Castroviejo D, Menendez-Pelaez A. Melatonin stimulates the activity of the detoxifying enzyme glutathione peroxidase in several tissues of chicks. J Pineal Res 19:111–115;1995.

    Google Scholar 

  68. Pablos MI, Guerrero JM, Ortiz GG, Agapito MT, Reiter RJ. Both melatonin and a putative nuclear melatonin receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Neuroendocrinol Lett 18:49–58;1997.

    Google Scholar 

  69. Pablos MI, Reiter RJ, Ortiz GG, Guerrero JM, Agapito MT, Chuang JI, Sewerynek E. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light. Neurochem Int 32:69–75;1998.

    Google Scholar 

  70. Pähkla R, Zilmer M, Kullisar T, Rägo L. Comparison of the antioxidant activity of melatonin and pinoline in vitro. J Pineal Res 24:96–101;1998.

    Google Scholar 

  71. Pang SF, Allen AE. Extra-pineal melatonin in the retina: Its regulation and physiological function. Pineal Res Rev 4:55–95;1986.

    Google Scholar 

  72. Pappolla Ma, Chyan YJ, Poeggeler B, Bozner P, Ghiso J, LeDoux SP, Wilson GL. Alzheimer β protein mediated oxidative damage of mitochondrial DNA: Prevention by melatonin. J Pineal Res 27:226–229;1999.

    Google Scholar 

  73. Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter RJ. An assessment of the antioxidant and antiamyloidogenic properties of melatonin: Implications for Alzheimer's disease. J Neural Transm 107:203–231;2000.

    Google Scholar 

  74. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin, a peroxyl radical scavenger more efficient than vitamin E. Life Sci 55:PL271-PL276;1994.

    Google Scholar 

  75. Pieri C, Moroni F, Marra M, Marcheselli F, Recchioni R. Melatonin is an efficient antioxidant. Arch Gerontol Geriatrics 20:159–165;1995.

    Google Scholar 

  76. Pierrefiche G, Laborit H. Oxygen radicals, melatonin and aging. Exp Gerontol 30:213–227;1995.

    Google Scholar 

  77. Poeggeler B, Reiter RJ, Hardeland R, Sewerynek E, Melchiorri D, Barlow-Walden LR. Melatonin, a mediator of electron transfer and repair reactions, acts synergistically with the chain breaking antioxidant ascorbate, trolox and glutathione. Neuroendocrinol Lett 17:87–91;1995.

    Google Scholar 

  78. Poeggeler B, Reiter RJ, Hardeland R, Tan DX, Barlow-Walden LR. Melatonin and structurally related, endogenous indoles act as potent electron donors and radical scavengers in vitro. Redox Rep 2:179–184;1996.

    Google Scholar 

  79. Poeggeler G, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, Barlow-Walden LR. Melatonin — a highly potent endogenous scavenger and electron donor: New aspects of the oxidation chemistry of this indole assessed in vitro. Ann NY Acad Sci 738:419–420;1994.

    Google Scholar 

  80. Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Physiologically concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 55:PL455-PL460;1994.

    Google Scholar 

  81. Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Inhibition of cerebellar nitric oxide synthase and cyclic GMP production by melatonin via complex formation with calmodulin. J Cell Biochem 65:430–442;1997.

    Google Scholar 

  82. Qi W, Reiter RJ, Tan DX, Manchester LC, Kim SJ, Garcia JJ. Inhibitory effect of melatonin on ferric nitrilotriacetate-induced lipid peroxidation and oxidative DNA damage in the rat kidney. Toxicology 139:81–91;1999.

    Google Scholar 

  83. Qi W, Tan DX, Reiter RJ, Kim SJ, Manchester LC, Cabrera J, Sainz RM, Mayo JC. Melatonin reduces lipid peroxidation and tissue edema in cerulein-induced acute pancreatitis in rats. Dig Dis Sci 44:2257–2262;1999.

    Google Scholar 

  84. Radi R, Beckman JS, Buch KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. J Biol Chem 266:4244–4250;1991.

    Google Scholar 

  85. Reiter RJ: Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180;1991.

    Google Scholar 

  86. Reiter RJ. Functional aspects of the pineal hormone melatonin in combating cell and tissue damage induced by free radicals. Eur J Endocrinol 134:412–420;1996.

    Google Scholar 

  87. Reiter RJ. Oxidative damage in the central nervous system: Protection by melatonin. Prog Neurobiol 56:359–384;1998.

    Google Scholar 

  88. Reiter RJ. Oxidative damage to nuclear DNA: Amelioration by melatonin. Neuroendocrinol Lett 20:145–149;1999.

    Google Scholar 

  89. Reiter RJ, Carneiro RC, Oh CS. Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metabol Res 29:363–372;1997.

    Google Scholar 

  90. Reiter RJ, Kim SJ. Phytochemicals: Melatonin. In: Francies FJ, ed. Encyclopedia of Food Science. New York, John Wiley, 1918–1922;1999.

    Google Scholar 

  91. Reiter RJ, Oh CS, Fijimori O: Melatonin: Its intracellular and genomic actions. Trends Endocrinol Metab 7:22–26;1996.

    Google Scholar 

  92. Reiter RJ, Tan DX, Kim SJ, Qi W. Melatonin as a pharmacological agent against oxidative damage to lipids and DNA. Proc West Pharmacol Soc 41:229–236;1998.

    Google Scholar 

  93. Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: A review of the evidence. Cell Biochem Biophys, in press.

  94. Reiter RJ, Tang L, Garcia JJ, Muñoz-Hoyos A. Pharmacological actions of melatonin in free radical pathophysiology. Life Sci 60:2255–2271;1997.

    Google Scholar 

  95. Roberts JE, Hu DN, Wishart JF. Pulse radiolysis studies of melatonin and chloromelatonin. J Photochem Photobiol 42:125–132;1997.

    Google Scholar 

  96. Romero MP, Osuna C, Garcia-Perganeda A, Carrillo-Vico A, Guerrero JM. The pineal secretory product melatonin reduces hydrogen peroxide-induced DNA damage in V-937 cells. J Pineal Res 26:227–235;1999.

    Google Scholar 

  97. Salem H, Baskin SI. The toxicology of antioxidants. In: Baskin SI, Salem H, eds. Oxidants, Antioxidants, and Free Radicals. Washington, Taylor & Francis, 206–226;1997.

    Google Scholar 

  98. Sies H. Strategies of antioxidative defense. Eur J Biochem 215:213–219;1993.

    Google Scholar 

  99. Siu AW, Reiter RJ, To CA. Pineal indoleamines and vitamin E reduce nitric oxide-induced lipid peroxidation in rat retinal homogenates. J Pineal Res 27:122–128;1999.

    Google Scholar 

  100. Skinner DC, Malpaux B. High melatonin concentrations in third ventricular fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405;1999.

    Google Scholar 

  101. Stascia P, Ulanski P, Rosiak JM. Melatonin as a hydroxyl radical scavenger. J Pineal Res 25:65–66;1998.

    Google Scholar 

  102. Stascia P, Ulanski P, Rosiak JM. Reactions of melatonin with radicals in deoxygenated aqueous solution. J Radioanal Nucl Chem 232:107–113;1998.

    Google Scholar 

  103. Susa N, Ueno S, Furukawa Y, Ueba J, Sugiyama M. Potent protective effect of melatonin on chromium (VI)-induced DNA singlestrand breaks, cytotoxicity and lipid peroxidation in primary cultures of rat hepatocytes. Toxicol Appl Pharmacol 144:377–384;1997.

    Google Scholar 

  104. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocrine J 1:57–60;1993.

    Google Scholar 

  105. Tan DX, Manchester LC, Reiter RJ, Plummer BF, Hardies LF, Weintraub ST, Vijayalaxmi, Shepherd AMM. A novel melatonin metabolite, cyclic 3-hydroxymelatonin: A biomarker of in vivo hydroxyl radical generation. Biochem Biophys Res Commun 253:614–620;1998.

    Google Scholar 

  106. Tan DX, Manchester LC, Reiter RJ, Qi W, Hanes MA, Farley NJ. High physiological levels of melatonin in the bile of mammals. Life Sci 65:2523–2529;1999.

    Google Scholar 

  107. Tan DX, Manchester LC, Reiter RJ, Qi W, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: Reactions and products. Biol Signals Recept 9:137–159;2000.

    Google Scholar 

  108. Tan DX, Manchester RJ, Reiter RJ, Qi W, Zhang M, Weintraub ST, Cabrera J, Sainz RM, Mayo JC. Identification of highly elevated levels of melatonin in bone marrow: Its origin and significance. Biochim Biophys Acta 1472:206–214;1999.

    Google Scholar 

  109. Urata Y, Honma S, Goto S, Todoroki S, Jida T, Cho S, Honma K, Kondo T. Melatonin induces γ-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radical Biol Med 27:838–847;1999.

    Google Scholar 

  110. Vijayalaxmi, Meltz MC, Reiter RJ, Herman TS. Melatonin and protection from genetic damage to blood and bone marrow: Wholebody irradiation studies in mice. J Pineal Res 27:221–225;1999.

    Google Scholar 

  111. Wakatsuki A, Okatani Y, Izumiya C, Ikenoue N. Melatonin protects against ischemia and reperfusion-induced oxidative lipid DNA damage in fetal rat brain. J Pineal Res 26:147–152;1999.

    Google Scholar 

  112. Zang LY, Cosma G, Gardner H, Vallynathan V. Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta 1425:467–477;1998.

    Google Scholar 

  113. Zhang H, Squadrito GL, Pryor WA. The reaction of melatonin with peroxynitrite: Formation of melatonin radical cation and absence of stable nitrated products. Biochem Biophys Res Commun 251:83–87;1998.

    Google Scholar 

  114. Zhang H, Squadrito GL, Uppi R, Pryor WA. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol 12:526–534;1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, R.J., Tan, Dx., Osuna, C. et al. Actions of melatonin in the reduction of oxidative stress. J Biomed Sci 7, 444–458 (2000). https://doi.org/10.1007/BF02253360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253360

Key Words

Navigation