Skip to main content
Log in

Prediction of brain delivery of ofloxacin, a new quinolone, in the human from animal data

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

We attempted to predict the delivery of ofloxacin (OFLX), a new quinolone antibacterial agent (NQ), into cerebrospinal fluid (CSF) in the human based on the physiological properties and pharmacokinetic paramters of NQs in various animals. Physiological properties for evaluation of drug delivery into CSF such as volume and the bulk flow rate of CSF and weight of choroid plexus, were compared among the rat, rabbit, cat, dog, and human. Statistically significant correlations with power values of 0.82–0.89 in the linear regression were observed on log-log plots between brain weight and those properties of each species. Delivery of OFLX into CSF from blood was analyzed by “diffusion and flow model” with unidirectional efflux process from CSF to blood. The blood-CSF diffusion clearance and the efflux clearance of OFLX in the human were extrapolated from animal data based on the allometric correlations between brain weight and these parameters in the rat, rabbit, and dog. The apparent volume of distribution and the total body clearance of NQs in the human could also be predicted from animal data based on the classical Adolph-Dedrick approach. To simulate the CSF concentration-time profile of OFLX in the human by using these predicted parameters, it was necessary to consider both the lumbar CSF compartment and the ventricular CSF compartment. Both plasma and CSF concentration-time profiles of OFLX predicted from only animal experimental data were in good agreement with those observed clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. E. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  2. R. L. Dedrick, D. D. Forester, J. N. Cannon, S. M. ElDareen, and L. B. Mellet. Pharmacokinetics of 1-β-D-arbino-furanoslycytosine (Ara-C) deamination in several species.Biochem. Pharmacol. 22:2405–2417 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. R. L. Dedrick, K. B. Bischoff, and D. S. Zaharko. Interspecies correlation of plasma concentration history of methotrexate (NSC-740).Cancer Chemother. Rep. 54:95–101 (1970).

    CAS  PubMed  Google Scholar 

  4. R. L. Dedrick, Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  5. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  6. H. Boxenbaum. Comparative pharmacokinetics of benzodiazepines in dog and man.J. Pharmacokin. Biopharm. 10:411–426 (1982).

    Article  CAS  Google Scholar 

  7. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of the disposition of β-lactam antibiotics in humans from pharmacokinetic parameters in animals.J. Pharmacokin. Biopharm. 12:241–261 (1984).

    Article  CAS  Google Scholar 

  8. Y. Sawada, M. Hanano, Y. Sugiyama, H. Harashima, and T. Iga. Prediction of the volumes of distribution of basic drugs in human based on data from animals.J. Pharmacokin. Biopharm. 12:587–596 (1984).

    Article  CAS  Google Scholar 

  9. Y. Sawada, H. Harashima, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of the plasma concentration time courses of various drugs in humans based on data from rats.J. Pharmacobio. Dyn. 8:757–766 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Y. Sawada, M. Hanano, Y. Sugiyama, and T. Iga. Prediction of the disposition of nine weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in rats.J. Pharmacokin. Biopharm. 13:477–492 (1985).

    Article  CAS  Google Scholar 

  11. R. L. Dedrick, E. H. Oldfield, and J. M. Collins. Arterial drug infusion with particular reference to the brain. Cancer Treat. Rep.68:373–380 (1984).

    CAS  PubMed  Google Scholar 

  12. R. L. Dedrick. Interspecies scaling of regional drug delivery.J. Pharm. Sci. 75:1047–1052 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. A. Ito, K. Hirai, M. Inoue, H. Koga, S. Suzue and S. Mitsuhashi.In vitro antibacterial activity of AM-715, a new nalidixic analog.Antimicrob. Agents Chemother. 17:103–108 (1980).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. J. Matsumoto, T. Miyamoto, A. Minamida, Y. Nishimura, H. Egawa, and H. Nishimura. Structure-activity relationships of 4-oxo-1, 8-naphthyridine-3-carboxylic acids including AT-2266, a new oral antipseudomonal agent. In J. D. Nelson and C. Grassi (eds.),Current Chemotherapy and Infectious Disease, American Socity of Microbiology, Washington, DC, pp. 454–456 (1980).

    Google Scholar 

  15. K. Sato, Y. Matsuura, M. Inoue, T. Une, Y. Osada, H. Ogawa and S. Mitsuhashi.In vitro andin vivo activity of DL-8280, a new oxazine derivative,Antimicrob. Agents Chemother. 22:548–553 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. R. Wise, J. M. Andrews, and L. J. Edwards.In vitro activity of BAY o 9867, a new quinolone derivative, compared with those of other antimicrobial agents.Antimicrob. Agents Chemother. 23:559–564 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. R. Malinverni and M. P. Glauser. Comparative studies of fluoroquinolones in the treatment of urinary tract infections,Rev. Infect. Dis. 10 (Suppl. 1):S153-S163 (1988).

    Article  PubMed  Google Scholar 

  18. J.-P. Thys, Quinolones in the treatment of bronchopulmonary infections.Ref. Infect. Dis. 10(Suppl. 1):S212-S217 (1988).

    Article  Google Scholar 

  19. J. H. Paton and D. S. Reeves. Clinical features and management of adverse effects of quinolone antibacterials.Drug Safety 6:8–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. W. Christ, T. Lehnert, and B. Ulbrich. Specific toxicologic aspects of the quinolones.Ref. Infect. Dis. 10(Suppl. 1):S141-S146 (1988).

    Article  CAS  Google Scholar 

  21. G. Takeo, N. Shibuya, M. Motomura, H. Kanazawa, and H. Shishido. A new DNA gyrase inhibitor induces convulsions: A case report and animal experiments.Chemotherapy (Tokyo)37:1154–1159 (1989).

    Google Scholar 

  22. J. H. Paton, and D. S. Reeves. Clinical features and management of adverse effects of quinolone antibacterials.Drug Safety 6:8–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. H. Sato, E. Okezaki, S. Yamamoto, O. Nagata, H. Kato, and A. Tsuji. Entry of the new quinolone antibacterial agents of ofloxacin and NY-198 into the central nervous system in rats.J. Pharmacobiodyn. 11:386–394 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. G. Valainis, D. Thomas, and G. Pankey. Penetration of ciprofloxacin into cerebrospinal fluid.Eur. J. Clin. Microbiol. 5:206–207 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. J. B. McClain, J. Rhoads, and G. Krol. Cerebrospinal fluid concentrations of ciprofloxacin in subjects with uninflamed meninges.J. Antimicrob. Chemother. 21:808–809 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. D. N. Gerding and J. A. Hitt. Tissue penetration of the new quinolones in humans.Rev. Infect. Dis. 11(Suppl. 5):S1046-S1057 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. W. M. Scheld. Quinolone therapy for infections of the central nervous systemRev. Infect. Dis. 11(Suppl. 5):S1194-S1202 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. K. Kawahara. Penetration of fluoroquinolones into human cerebrospinal fluid.Chemotherapy (Tokyo)38:461–476 (1990).

    Google Scholar 

  29. K. Kawahara, M. Kawahara, T. Goto and Y. Ohi. Penetration of sparfloxacin into the human spinal fluid: a comparative study with 5 other fluoroquinolones.Chemotherapy (Tokyo)39:(Suppl. 4):149–157 (1991).

    Google Scholar 

  30. T. V. Tho, A. Armengaud, and B. Davet. Diffusion of enoxacin into the cerebrospinal fluid in dogs with healthy meninges and with experimental meningitis.J. Antimicrob. Chemother. 14(Suppl. C):57–62 (1984).

    Article  Google Scholar 

  31. F. Taga, F. Kobayashi, S. Saito, T. Ooie, F. Kawahara, H. Uchida, J. Simada, S. Hori, and O. Sakai. Possibility for induction of convulsion by fleroxacin and its disposition in the central nervous system.Arzneim. Forsch. 40:900–904 (1990).

    CAS  Google Scholar 

  32. N. Bitar, R. Claes, and P. V. der Auwera. Concentration of ofloxacin in serum and cerebrospinal fluid of patients without meningitis receiving the drug intravenously and orally.Antimicrob. Agents Chemother. 33:1686–1690 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. M. Drancourt, H. Gallais, D. Raoult, E. Estrangin, M. N. Mallet, and P. de Micco. Ofloxacin penetration into cerebrospinal fluid.J. Antimicrob. Chemother. 22:263–265 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. A. M. Shibl, C. J. Hackbarth, and M. A. Sande. Evaluation of pefloxacin in experimental Escherichia coli meningitis.Antimicrob. Agents Chemother. 29:409–411 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. M. Neuman. Clinical pharmacokinetics of the newer antibacterial 4-quinolones.Clin. Pharmacokin.14:96–121 (1988).

    Article  CAS  Google Scholar 

  36. J. Dow, J. Chazal, A. M. Frydman, R. Woehrle, F. Djebbar, and J. Gaillot. Transfer kinetics of pefloxacin into cerebro-spinal fluid after one hour iv infusion of 400 mg in man.J. Antimicrob. Chemother.17(Suppl. B):81–87 (1986).

    Article  PubMed  Google Scholar 

  37. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer.J. Pharmacobiodyn.4:879–885 (1981).

    Article  CAS  PubMed  Google Scholar 

  38. M. Gibaldi and D. Perrier. Drugs and the pharmaceutical sciences. In J. Swarbrick (ed.),Pharmacokinetics, Vol. 1, Marcel Dekker, New York, 1975.

    Google Scholar 

  39. M. D. Karol, P. V. Pedersen, and R. E. Brashear. Diffusion and flow transfer of theophylline across the blood-brain barrier: pharmacokinetic analysis.J. Pharmacokin. Biopharm. 11:273–287 (1983).

    Article  CAS  Google Scholar 

  40. J. M. Collins and L. Dedrick. Distributed model for drug delivery to CSF and brain tissue.Am. J. Physiol. 245:R303-R310 (1983).

    CAS  PubMed  Google Scholar 

  41. R. G. Blasbert, C. S. Patlak, and W. R. Shapiro. Distribution of methotrexate in the cerebrospinal fluid and brain and after intraventricular administration.Cancer Treat. Rep. 61:633–641 (1977).

    Google Scholar 

  42. W. R. Shapiro, D. F. Young, and B. M. Mehta. Methotrexate: Distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections.New Engl. J. Med. 293:161–166 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. H. F. Cserr and B. J. Berman. Iodide and thiocyanate efflux from brain following injection into rat caudate nucleus.Am. J. Physiol. 235:F331-F337 (1978).

    CAS  PubMed  Google Scholar 

  44. H. Cserr. Potassium exchange between cerebrospinal fluid, plasma, and brain.Am. J. Physiol. 209:1219–1226 (1965).

    CAS  PubMed  Google Scholar 

  45. R. E. Harbut and C. E. Johanson. Third ventricle choroid plexus function and its response to acute perturbations in plasma chemistry.Brain Res.374:137–146 (1986).

    Article  CAS  PubMed  Google Scholar 

  46. M. Pollay and H. Davson. The passage of certain substances out of the cerebrospinal fluid.Brain 86:137–150 (1963).

    Article  CAS  PubMed  Google Scholar 

  47. K. Welch. Secretion of cerebrospinal fluid by choroid plexus of the rabbit.Am. J. Physiol. 205:617–624 (1963).

    CAS  PubMed  Google Scholar 

  48. A. V. Lorenzo and S. R. Snodgrass. Leucine transport from the ventricles and the cranial subarachnoid space in the cat.J. Neurochem. 19:1287–1298 (1972).

    Article  CAS  PubMed  Google Scholar 

  49. R. Spector and A. V. Lorenzo. The transport and metabolism of salicylate in the central nervous system:in vivo studies.J. Pharmacol. Exp. Ther. 185:276–286 (1973).

    CAS  PubMed  Google Scholar 

  50. S. R. Heisey, D. Held, and J. R. Pappenheimer. Bulk flow and diffusion in the cerebrospinal fluid system of the goat.Am. J. Physiol. 203:775–781 (1962).

    CAS  PubMed  Google Scholar 

  51. E. A. Bering Jr. Circulation of the cerebrospinal fluid: demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement.J. Neurosurg. 19:405–413 (1962).

    Article  PubMed  Google Scholar 

  52. A. Sahar. The effect of pressure on the production of cerebrospinal fluid by the choroid plexus.J. Neurol. Sci. 16:49–58 (1972).

    Article  CAS  PubMed  Google Scholar 

  53. W. W. Oppelt, T. H. Maren, E. S. Owens, and D. P. Rall. Effects of acid-base alterations on cerebrospinal fluid production.Proc. Soc. Exp. Biol. (N.Y.)114:86–89 (1963).

    Article  CAS  Google Scholar 

  54. E. A. Bering Jr. Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow.Am. J. Physiol. 197:825–828 (1959).

    PubMed  Google Scholar 

  55. P. L. Alyman and D. S. Dittmer (eds).Biology Data Book, 2nd ed., Vol. 3. Federation of American Societies for Experimental Biology, Bethesda, MD, 1974.

    Google Scholar 

  56. A. Tuji, H. Sato, Y. Kume, I. Tamai, E. Okezaki, O. Nagata, and H. Kato. Inhibitory effects of quinolone antibacterial agents on γ-aminobutyric acid binding to receptor sites in rat brain membranes.Antimicrob. Agents Chemother. 32:190–194 (1988).

    Article  Google Scholar 

  57. S. Nakamura, N. Kurobe, S. Kashimoto, T. Ohue, Y. Takase, and M. Shimizu. Absorption distribution, excretion and metabolism of AT-2266 in experimental animals.Chemotherapy (Tokyo)32(Suppl. 3):86–84 (1984).

    CAS  Google Scholar 

  58. M. Kawai, M. Nakanishi and N. Maekawa. Phase I study of AT-2266.Chemotherapy (Tokyo)32(Suppl. 3):334–358 (1984).

    CAS  Google Scholar 

  59. E. Okezaki, K. Ohmishi, S. Koike, Y. Takahashi, and E. Makino. Disposition and metabolism of NY-198 I: bioassay study of absorption, distribution and excretion in various animals.Chemotherapy (Tokyo)36(Suppl. 2):132–137 (1988).

    CAS  Google Scholar 

  60. E. Okezaki, E. Makino, K. Ohmishi, O. Nagata, T. Yamada, and K. Takahashi. Disposition and metabolism of NY-198 II:HPLC and bioassay studies of absorption and excretion in dog.Chemotherapy (Tokyo)36(Suppl. 2):138–143 (1988).

    CAS  Google Scholar 

  61. O. Nagata, T. Yamada, K. Takahashi, E. Okezaki, T. Yanagida, and H. Nakanishi. Disposition and metabolism of NY-198 III: absorption, metabolism and excretion of NY-198 in monkeys by high-performance liquid chromatography.Chemotherapy (Tokyo)36(Suppl. 2):144–150 (1988).

    CAS  Google Scholar 

  62. O. Nagata, T. Yamada, T. Yamaguchi, E. Okezaki, T. Terasaki, and A. Tsuji. Disposition and metabolism of NY-198 IV: absorption, distribution and excretion of14C-NY-198 in rats and dogs.Chemotherapy (Tokyo)36(Suppl. 2):151–173 (1988).

    CAS  Google Scholar 

  63. M. Nakashima, T. Uematsu, Y. Takiguchi, A. Mizuno, and M. Kanamaru. Phase I study on NY-198.Chemotherapy, (Tokyo)36(Suppl. 2):201–239 (1988).

    Google Scholar 

  64. S. Murayama, K. Hirai, A. Ito, Y. Abe, and T. Irikura. Studies on absorption, distribution and excretion of AM-715 in animals by bioassay method.Chemotherapy (Tokyo)29(Suppl. 4):98–104 (1981).

    CAS  Google Scholar 

  65. Y. Nagatsu, K. Endo, and T. Irikura. Studies on the fate of14C-labelled AM-715Chemotherapy (Tokyo)29(Suppl. 4):105–118 (1981).

    CAS  Google Scholar 

  66. T. Abiko and A. Ishihama. Phase I study on AM-715.Chemotherapy (Tokyo)29(Suppl. 4):136–145 (1981).

    CAS  Google Scholar 

  67. M. Tsumura, K. Sato, T. Une, and H. Tachizawa. Metabolic disposition of DL-8280. The first report: comparison between absorption and excretion of DL-8280 in the dog and monkey by bioassay and HPLC methods.Chemotherapy (Tokyo)32(Suppl. 1):1179–1184 (1984).

    CAS  Google Scholar 

  68. O. Okazaki, T. Kurata, K. Hashimoto, K. Sudo, M. Tsumura, and H. Tachizawa. Metabolic disposition of DL-8280: The second report: Absorption, distribution and excretion of14C-DL-8280 in various animal species.Chemotherapy (Tokyo)32(Suppl. 1):1185–1202 (1984).

    CAS  Google Scholar 

  69. N. Ichihara. Phase I study on DL-8280.Chemotherapy (Tokyo)32(Suppl. 1):118–149 (1984).

    CAS  Google Scholar 

  70. G. Montay, Y. Goueffon, and F. Roquet. Absorption, distribution, metabolic fate, and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys, and humans.Antimicrob. Agents Chemother. 25:463–472 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. T. Yasuda, Y. Watanabe, T. Hayashi, and R. Kitayama. Serum protein binding of T-3262.Chemotherapy (Tokyo)36(Suppl. 9)143–148 (1988).

    CAS  Google Scholar 

  72. T. Yasuda, Y. Watanabe, S. Minami, K. Kumano, S. Takagi, R. Tsuneda, and J. Kanayama. Absorption, distribution, metabolism and excretion of T-3262 in experimental animals.Chemotherapy (Tokyo)36(Suppl. 9):149–157 (1988).

    CAS  Google Scholar 

  73. M. Nakashima, T. Uematsu, and M. Kanamaru. Phase I study of T-3262, a new pyridonecarboxylic acid derivative.Chemotherapy (Tokyo)36(Suppl. 9):158–180 (1988).

    CAS  Google Scholar 

  74. H. Lode, G. Hoffken, K. Borner, and P. Koeppe. Unique aspects of quinolone pharmacokinetics.Clin. Pharmacokin. 16(Suppl. 1):1–4 (1989).

    Article  CAS  Google Scholar 

  75. A. M. Korinek, G. Montay, A. Bianchi, M. Guggiari, R. Grob, and P. Viars. Penetration of pefloxacin into human brain tissue.Rev. Infect. Dis. 10(Suppl. 1):S257 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, J., Yamamoto, K., Sawada, Y. et al. Prediction of brain delivery of ofloxacin, a new quinolone, in the human from animal data. Journal of Pharmacokinetics and Biopharmaceutics 22, 207–227 (1994). https://doi.org/10.1007/BF02353329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353329

Key Words

Navigation