Skip to main content
Log in

Use of parallel erlang density functions to analyze first-pass pulmonary uptake of multiple indicators in dogs

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The gamma and Erlang density functions describe a large class of lagged, right-skewed distributions. The Erlang distribution has been shown to be the analytic solution for a chain of compartments with identical rate constants. This relationship makes it useful for the analysis of first-pass pulmonary drug uptake data following intravenous bolus administration and the incorporation of this analysis into an overall systemic drug disposition model. However, others have shown that one Erlang density function characterizes the residence time distribution of solutes in single tissues with significant systematic error. We propose a model of two Erlang density functions in parallel that does characterize well the arterial appearance of indocyanine green, antipyrine, and alfentanil administered simultaneously by right atrial bolus injection. We derive the equations that permit calculation of the higher order moments of a system consisting of two parallel Erlang density functions and use the results of these calculations from the data for all three indicators to estimate pulmonary capillary blood volume and mean transit time in the dog.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Post. Studies on the pharmacokinetic function of the lung with special reference to lidocaine.Acta Pharmacol. Toxicol. (Copenh) 1:1–53 (1979).

    Google Scholar 

  2. D. L. Roerig, K. J. Kotrly, C. A. Dawson, S. B. Ahlf, J. F. Gualtieri, and J. P. Kampine. First-pass uptake of verapamil, diazepam, and thiopental in the human lung.Anesth. Anal. 69:461–466 (1989).

    Article  CAS  Google Scholar 

  3. J. A. Jacquez,Compartmental Analysis in Biology and Medicine, Second Ed., The University of Michigan Press, Ann Arbor, 1985.

    Google Scholar 

  4. S. H. Audi, G. S. Krenz, J. H. Linehan, D. A. Rickaby, and C. A. Dawson, Pulmonary capillary transport function from flow-limited indicators.J. Appl. Physiol. 77:332–351 (1994).

    CAS  PubMed  Google Scholar 

  5. S. H. Audi, J. H. Linehan, G. S. Krenz, C. A. Dawson, S. B. Ahlf, and D. L. Roerig. Estimation of the pulmonary capillary transport function in isolated rabbit lungs.J. Appl. Physiol. 78:1004–1014 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. T. K. Henthorn, M. J. Avram, T. C. Krejcie, C. A. Shanks, and D. A. Kaczynski. Minimal compartmental model of circulatory mixing of indocyanine green.Am. J. Physiol. 262:H903-H910 (1992).

    CAS  PubMed  Google Scholar 

  7. T. C. Krejcie, T. K. Henthorn, C. A. Shanks, and M. J. Avram. A recirculatory model describing the circulatory mixing, tissue distribution and elimination of antipyrine in dogs.J. Pharmacol. Exp. Ther. 269:609–619 (1994).

    CAS  PubMed  Google Scholar 

  8. Y. F. Huang, R. N. Upton, L. E. Mather, and W. B. Runciman. An assessment of methods for sampling blood to characterize rapidly changing blood drug concentrations.J. Pharm. Sci. 80:847–851 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. D. M. Grasela, M. L. Rocci, and P. H. Vlasses. Experimental impact of assay-dependent differences in plasma indocyanine green concentration determinations.J. Pharmacokin. Biopharm. 15:601–613 (1987).

    Article  CAS  Google Scholar 

  10. M. J. Avram and T. C. Krejcie. Determination of sodium pentobarbital and either sodium methohexital or sodium thiopental in plasma by high performance liquid chromatography with ultraviolet detection.J. Chromatogr. 414:484–491 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. S. Björkman and D. R. Stanski. Simultaneous determination of fentanyl and alfentanil in rat tissue by capillary gas chromatography.J. Chromatogr. 433:95–104 (1988).

    Article  PubMed  Google Scholar 

  12. K. L. Zierler. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. In W. F. Hamilton (ed.),Handbook of Physiology, Circulation, Vol. 1, Section 2, American Physiological Society, Washington, D.C., pp. 585–615, 1962.

    Google Scholar 

  13. W. O. Cua, G. Basset, F. Bouchonnet, R. A. Garrick, G. Saumon, and F. P. Chinard. Endothelial and epithelial permeabilities to antipyrine in rat and dog lungs.Am. J. Physiol. 258:H1321-H1333 (1990).

    CAS  PubMed  Google Scholar 

  14. E. M. Renkin. Effects of blood flow on diffusion kinetics in isolated perfused hind legs of cats: A double circulation hypothesis.Am. J. Physiol. 183:125–136 (1955).

    CAS  PubMed  Google Scholar 

  15. T. K. Henthorn, T. C. Krejcie, and M. J. Avram. The relationship between alfentanil distribution kinetics and cardiac output.Clin. Pharmacol. Ther. 52:190–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. S. Björkman, D. R. Wada, D. R. Stanski, and W. F. Ebling. Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric singletissue models.J. Pharmacokin. Biopharm. 22:381–409 (1994).

    Article  Google Scholar 

  17. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparisons of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination.J. Pharmacokin. Biopharm. 16:41–83 (1988).

    Article  CAS  Google Scholar 

  18. R. L. Capen, L. P. Latham, and W. W. Wagner. Comparison of direct and indirect measurements of pulmonary capillary transit times.J. Appl. Physiol. 62:1150–1154 (1987).

    CAS  PubMed  Google Scholar 

  19. J. C. Hogg, B. A. Martin, S. Lee, and T. McLean. Regional differences in erythrocyte transit times in normal lungs.J. Appl. Physiol. 59:1266–1271 (1985).

    CAS  PubMed  Google Scholar 

  20. W. W. Wagner, Jr., L. P. Latham, W. L. Hanson, S. E. Hoffmeister, and R. L. Capen. Vertical gradient of pulmonary capillary transit times.J. Appl. Physiol. 61:1270–1274 (1986).

    PubMed  Google Scholar 

  21. J. C. Hogg, T. McLean, B. A. Martin, and B. Wiggs. Erythrocyte transit and neutrophil concentration in the dog lung.J. Appl. Physiol. 65:1217–1225 (1988).

    CAS  PubMed  Google Scholar 

  22. R. W. Glenny and H. T. Robertson. Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity.J. Appl. Physiol. 69:532–545 (1990).

    CAS  PubMed  Google Scholar 

  23. G. S. Krenz, L. Jianming, C. A. Dawson, and J. H. Linehan. Impact of parallel heterogeneity on a continuum model of the pulmonary arterial tree.J. Appl. Physiol. 77:660–670 (1994).

    CAS  PubMed  Google Scholar 

  24. Y. W. Zhen, S. E. Cross, and M. S. Roberts. Influence of physicochemical parameters and perfusate flow rate on the distribution of solutes in the isolated perfused rat hindlimb determined by the impulse-response technique.J. Pharm. Sci. 84:1020–1027 (1995).

    Article  Google Scholar 

  25. S. Björkman, D. R. Stanski, D. Verrotta, and H. Harashima. Comparative tissue concentration profiles of fentanyl and alfentanil in humans predicted from tissue/blood partition data obtained in rats.Anesthesiology 72:865–873 (1990).

    Article  PubMed  Google Scholar 

  26. G. Clausen, A. Hope, and K. Aukland. Partition of125I-iodoantipyrine among erythrocytes, plasma and renal cortex in the dog.Acta Physiol. Scand. 107:63–68 (1979).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the National Institute of General Medical Sciences RO1-GM-43776, RO1-GM-47502, and PO1-GM-47819.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejcie, T.C., Jacquez, J.A., Avram, M.J. et al. Use of parallel erlang density functions to analyze first-pass pulmonary uptake of multiple indicators in dogs. Journal of Pharmacokinetics and Biopharmaceutics 24, 569–588 (1996). https://doi.org/10.1007/BF02353481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353481

Key Words

Navigation