Skip to main content
Log in

The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The Bateman function,\(A''(e^{ - k_e t} - e^{ - k_a t} )\), quantifies the time course of a first-order invasion (rate constant ka) to, and a first-order elimination (rate constant ke) from, a one-compartment body model where A″=(γDose)ka/(k ak e) V. The rate constants (whenk a>3k e) are frequently determined mined by the “method of residuals” or “feathering”. The rate constantk a is actually the sum of rate constants for the removal of drug from the invading compartment. “Flip-flop”, the interchange of the values of the evaluated rate constants, occurs whenk e>3k a. Whether −k a or −k e is estimable from the terminal lnC-t slope can be determined from which apparent volume of distribution,V, derived from the Baterman function is the most reasonable. The Bateman function and “feathering” fail when the rate constants are equal. The time course is then expressed byCDtk e −kt. The determination of such equalk values can be obtained by the nonlinear fitting of suchC-t data with random error to the Bateman function. Also, rate constant equality can be concluded when 1/t max and the k min (value ofk e at the minimum value of\(e^{ - k_e t_{max} } /k_e\) plotted against variablek e values) are synonymous or whenk min t max approximates unity. Simpler methods exist to evaluateC-t data. When a drug has 100% bioavailability, regression ofDose/V/C onAUC/C in the nonabsorption phase givesk e no matter what is the ratio ofm=k a /k e . Sincek e t max=lnm/(m−1),m can be determined from the given table relatingm andk e t max. When γ is unknown,k e can be estimated from the abscissas of intersections of plots of\(C_{max} e^{k_e t_{max} }\) andk e AUC, both plotted vs. arbitrary values ofk e, and γD/V values are estimable from the ordinate of the intersection. Also, when γ is unknown,k e can be estimated from the abscissas of intersections (or of closest approaches) of\(e^{k_e t_{max} } /k_e\) andAUC/C max, both plotted vs. arbitrary values ofk e. TheC-t plot of the Modified Bateman function,\(C = Be^{ - \lambda _2 t} - Ae^{ - \lambda _1 t}\), does not commence at the origin (i.e., whent c=0=0 and when a lag time does not exist). However,T C=0 = ln(A/B/(λ12 whenA>B. AUC A″ without time lag is the same asAUC A≠B and\(A'' = Be^{ - \lambda _2 t} = Ae^{ - \lambda _1 t}\). Thet max of theC-t plot of the latter ist c=0 later than thet max of theC-t plot of the former which commences att=0. However, (AUMC A≠Buncorr ) =B 22 -A 21 differs fromAUMC A≠Bcorr ) =A″t C=0 (1/λ2-1/λ1 +A″(1/λ 22 -1/λ 21 ). (AUMC A″corr ) =A″(1/λ 22 -1/λ 21 ) whenC-t plots start att=0.AUMC A ≠ Buncorr is not valid. The (MRT A ≠ Buncorr ) is also an invalidMRT estimate,\((B/\lambda _2^2 - A/\lambda _1^2 )/e^{t_{c = 0} } (B/\lambda _2 - A/\lambda _1 )\) , but whenA>B, C-t curves which start at the origin,C t=0 , haveMRT values displaced byMRT A ≠ Bcorr =MRT [A′ or A' = A = B]; +t C=0 . Thet max of the Bateman function is also displaced byt C=0 when theA exceeds theB of its modified form. Dose-dependent pharmacokinetics can be concluded fromC-t data generated by various firstorder invading nonintravenous doses if drug absorption is 100%. Thek e values can be determined if the apparent volume of distribution of the one-compartment body model is known. Plots ofm/AUC p t vs. timet have a slope of — CLME, (the negative of the clearance of the metabolite) and an intercept of the clearance of the precursor, CLPM, provided that all of the precursor had been absorbed. Similar studies could determine the appararent volume of distribution of the metabolite and the clearance (and thus the rate constant,k PM=CLPM/V P) of the precursor to the metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Bateman. The solution of a system of differential equations occurring in the theory of radioactive transformations.Proc. Cambridge Phil. Soc. 15:423–427 (1910).

    CAS  Google Scholar 

  2. F. H. Dost.Grundlagen der Pharmakokinetik, George Thieme Verlag, Stuttgart, 1968, (a) pp. 44–47, 241–242; (b) p. 143.

    Google Scholar 

  3. M. Gibaldi and D. Perrier,Pharmacokinetics, Marcel Dekker, New York, 1975, (a) p. 18, pp. 33–34; (b) Appendix 3, pp. 281–292.

    Google Scholar 

  4. M. Gibaldi and D. Perrier,Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982. (a) chap. 4, pp. 145–198, (b) pp. 147–148, (c) pp. 34–39, (d) Appendix C, pp. 433–436 method of residuals, (e) pp. 37–39, (f) p. 82, (g) p. 146, (h) pp. 445–449, Appendix D, (i) pp. 149–155, (j) pp. 409–414, chap. 11, (k) pp. 319–353, chap. 8.

    Google Scholar 

  5. S. Glasstone,Textbook of Physical Chemistry, 2nd ed., D. Van Nostrand, New York, 1946, pp. 1075–1077.

    Google Scholar 

  6. R. E. Notari, J. L. DeYoung, and R. H. Reuning. Effect of parallel first order drug loss from site of administration on calculated values for absorption rate constants.J. Pharm. Sci. 61:135–138 (1972).

    Article  CAS  PubMed  Google Scholar 

  7. D. S. Riggs.The Mathematical Approach to Physiological Problems, A Critical Primer, Williams and Wilkins, Baltimore, MD, 1963, (a) pp. 120–161, (b) p. 163.

    Google Scholar 

  8. E. R. Garrett. Simplified methods for the evaluation of the parameters of the time-course of plasma concentration in the one-compartment body model with first-order invasion and first-order drug elimination including methods for ascertaining when such rate constants are equal.J. Pharmacokin. Biopharm. 21:689–734 (1993).

    Article  CAS  Google Scholar 

  9. P. L. Altman and D. S. Dittmer (eds.).Biology Data Book, Federation of American Societies for Experimental Biology, Washington, DC, 1964, p. 264.

    Google Scholar 

  10. P. L. Altman and D. S. Dittmer (eds.).Blood and Other Body Fluids, Federation of American Societies for Experimental Biology, Washington DC, 1961, pp. 358–359.

    Google Scholar 

  11. K. K. H. Chan and K. W. Miller. Nonlinear regression approach for determining whether absorption and elimination rate constants are equal in the one-compartment body model with first-order processes.J. Pharm. Sci. 72:574–576 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. I. H. Patel. Concentration ratio method to determine the rate constants for the special case when ka=ke.J. Pharm. Sci. 73:859–861 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. C. M. Metzler, G. L. Elfring, and A. J. McEwen. A package of computer programs for pharmacokinetic modelling.Biometrics 30:562–563 (1974).

    Article  Google Scholar 

  14. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer.J. Pharm. Dyn. 41:879–885 (1981).

    Article  Google Scholar 

  15. M. Bialer. A simple method for determining whether absorption and elimination rate constants are equal in the one-compartment open model with first-order processes.J. Pharmacokin. Biopharm. 8:111–113 (1980).

    Article  CAS  Google Scholar 

  16. M. Barzegar-Jalali and M. Toomanian. Theoretical consideration for the cases where absorption rate constant approaches elimination rate constant in the linear one-compartment open model.Int. J. Pharm. 12:351–354 (1982).

    Article  CAS  Google Scholar 

  17. P. Macheris, M. Symillides, and C. Reppas. On the assessment of the relative magnitude of rate constants in the linear open one-compartment model.J. Pharm. Sci. 81:1231–1233 (1992).

    Article  Google Scholar 

  18. T. W. Hermann and F. K. Glowka. Bioavailability of racemic ibuprofen and its lysinate from suppositories in rabbits. Unpublished data, given with permission, 1990.

  19. J. G. Wagner and E. Nelson. (a) Per cent absorbed time plots derived from blood levels and/or urinary excretion data.J. Pharm. Sci. 52:610–611 (1963). (b) Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drugsJ. Pharm. Sci. 53:1392–1403 (1964).

    Article  CAS  PubMed  Google Scholar 

  20. J. J. Ashley and G. Levy. Kinetics of diphenylhydantoin elimination in rats.J. Pharmacokin. Biopharm. 1:99–102 (1974).

    Article  Google Scholar 

  21. E. R. Garrett, J. Brés, K. Schnelle, and L. L. Rolf Jr. Pharmacokinetics of saturably metabolized amobarbital.J. Pharmacokin. Biopharm. 2:43–104 (1974).

    Article  CAS  Google Scholar 

  22. R. A. O'Reilly, P. M. Aggeler, and L. S. Leong. Studies on the coumarin anticoagulant drugs. A comparison of the pharmacodynamics of dicumarol and warfarin in man.Thromb. Diath. Haemorrh. 11:1–22 (1964).

    PubMed  Google Scholar 

  23. P. G. Dayton, S. A. Cucinell, M. Weiss, and J. M. Perel. Dose-dependence of drug plasma level decline in dogs.J. Pharmacol. Exp. Ther. 158:305–316 (1967).

    CAS  PubMed  Google Scholar 

  24. E. R. Garrett. In L. Z. Benet, G. Levy, and B. L. Ferraiolo (eds.),Pharmacokinetics A Modern View, Plenum Press, New York, 1984, chap. 20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We regretfully announce that Dr. Garrett passed away on October 25, 1993, after an extended illness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, E.R. The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. Journal of Pharmacokinetics and Biopharmaceutics 22, 103–128 (1994). https://doi.org/10.1007/BF02353538

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353538

Key words

Navigation