Skip to main content
Log in

Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Factors influencing brain uptake of benzodiazepine derivatives were evaluated in adult Sprague Dawley rats (n=8–10 per drug). Animals received single intraperitoneal doses of alprazolam, triazolam, lorazepam, flunitrazepam, diazepam, midazolam, desmethyldiazepam, or clobazam. Concentrations of each drug (and metabolites) in whole brain and serum 1 h after dosage were determined by gas chromatography. Serum free fraction was measured by equilibrium dialysis. In vitro binding affinity (apparentK i) of each compound was estimated based on displacement of tritiated flunitrazepam in washed membrane preparations from rat cerebral cortex. Lipid solubility of each benzodiazepine was estimated using the reverse-phase liquid chromatographic (HPLC) retention index at physiologic pH. There was no significant relation between brain:total serum concentration ratio and either HPLC retention (r=0.18) or bindingK i (r=−0.34). Correction of uptake ratios for free as opposed to total serum concentration yielded a highly significant correlation with HPLC retention (r=0.78,P<0.005). However, even the corrected ratio was not correlated with bindingK i (r=−0.22). Thus a benzodiazepine's capacity to diffuse from systemic blood into brain tissue is much more closely associated with the physico-chemical property of lipid solubility than with specific affinity. Unbound rather than total serum or plasma concentration most accurately reflects the quantity of drug available for diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abernethy DR, Greenblatt DJ, Divoll M (1983) Prolonged accumulation of diazepam in obesity. J Clin Pharmacol 23:369–376

    PubMed  CAS  Google Scholar 

  • Arendt RM, Greenblatt DJ, Jong RH, Bonin JD, Abernethy DR, Ehrenberg BL, Giles HG, Sellers EM, Shader RI (1983) In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action, and peripheral distribution. J Pharmacol Exp Ther 227:95–106

    Google Scholar 

  • Arendt RM, Greenblatt DJ, Garland WA (1984) Quantitation by gas chromatography of the 1- and 4-hydroxy metabolites of midazolam in human plasma. Pharmacology 29:158–164

    PubMed  CAS  Google Scholar 

  • Borea PA, Bonora A (1983) Brain receptor binding and lipophilic character of benzodiazepines. Biochem Pharmacol 32:603–607

    Article  PubMed  CAS  Google Scholar 

  • Eatman FB, Colburn WA, Boxenbaum HG, Posmanter HN, Weinfeld RE, Ronfeld R, Weissman L, Moore JD, Gibaldi M, Kaplan SA (1977) Pharmacokinetics of diazepam following multiple-dose oral administration to healthy human subjects. J Pharmacokinet Biopharm 5:481–494

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ (1980) Electron-capture GLC determination of clobazam and desmethylclobazam in plasma. J Pharm Sci 69:1351:1352

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Shader RI (1985) Clinical pharmacokinetics of the benzodiazepines. In: Smith DE, Wesson DR (eds) The benzodiazepines: current standards for medical practice. M.T.P. Press, Lancaster, UK, pp 43–58

    Google Scholar 

  • Greenblatt DJ, Franke K, Shader RI (1978) Analysis of lorazepam and its glucuronide metabolite by electron-capture gas-liquid chromatography: use in pharmacokinetic studies of lorazepam. J Chromatogr 146:311–320

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Ochs HR, Lloyd BL (1980) Entry of diazepam and its major metabolite into cerebrospinal fluid. Psychopharmacology 70:89–93

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Laughren TP, Allen MD, Harmatz JS, Shader RI (1981a) Plasma diazepam and desmethyldiazepam concentrations during long-term diazepam therapy. Br J Clin Pharmacol 11:35–40

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Divoll M, Moschitto LJ, Shader RI (1981b) Electron-capture gas chromatographic analysis of the triazolobenzodiazepines alprazolam and triazolam. J Chromatogr 225:202–207

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Shader RI, Abernethy DR, Ochs HR, Divoll M, Sellers EM (1982a) Benzodiazepines and the challenge of pharmacokinetic taxonomy. In: Usdin E, Skolnick P, Tallman JF, Greenblatt D, Paul SM (eds) Pharmacology of benzodiazepines. MacMillan, London, pp 257–269

    Google Scholar 

  • Greenblatt DJ, Sellers EM, Koch-Weser J (1982b) Importance of protein binding for the interpretation of serum or plasma drug concentrations. J Clin Pharmacol 22:259–263

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Ochs HR, Locniskar A, Lauven PM (1982c) Automated electron-capture gas chromatographic analysis of flunitrazepam in plasma. Pharmacology 24:82–87

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Shader RI, Abernethy DR (1983a) Current status of benzodiazepines. N Engl J Med 309:354–358, 410–416

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Divoll M, Abernethy DR, Ochs HR, Shader RI (1983b) Benzodiazepine kinetics: implications for therapeutics and pharmacogeriatrics. Drug Metab Rev 14:251–292

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Arendt RM, Abernethy DR, Giles HG, Sellers EM, Shader RI (1983c) In vitro quantitation of benzodiazepine lipophilicity: relation to in vivo distribution. Br J Anaesth 55:985–989

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Divoll M, Shader RI (1983d) Automated gas chromatographic determination of plasma alprazolam concentrations. J Clin Psychopharmacol 3:366–368

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Divoll M, Puri SK, Ho I, Zinny MA, Shader RI (1983e) Reduced single-dose clearance of clobazam in elderly men predicts increased multiple-dose accumulation. Clin Pharmacokinet 8:83–94

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Abernethy DR, Morse DS, Shader RI, Harmatz JS (1984) Clinical importance of the interaction of diazepam and cimetidine. N Engl J Med 310:1639–1643

    Article  PubMed  CAS  Google Scholar 

  • Guentert TW (1984) Pharmacokinetics of benzodiazepines and of their metabolites. Prog Drug Metab 8:241–386

    CAS  Google Scholar 

  • Klotz U, Kangas L, Kanto J (1980) Clinical pharmacokinetics of benzodiazepines. Prog Pharmacol 3 (No. 3):1–72

    Google Scholar 

  • McPherson GA (1983) A practical computer-based approach to the analysis of radioligand binding experiments. Comput Progr Biomed 17:107–114

    Article  CAS  Google Scholar 

  • Miller LG, Greenblatt DJ, Shader RI (1987a) Benzodiazepine receptor binding: influence of physiologic and pharmacologic factors. Biopharm Drug Dispos 8:103–114

    PubMed  CAS  Google Scholar 

  • Miller LG, Greenblatt DJ, Paul SM, Shader RI (1987b) Benzodiazepine receptor occupancy in vivo: correlation with brain concentrations and pharmacodynamic actions. J Pharmacol Exp Ther 240:516–522

    PubMed  CAS  Google Scholar 

  • Moschitto LJ, Greenblatt DJ (1983) Concentration-independent plasma protein binding of benzodiazepines. J Pharm Pharmacol 35:179–180

    PubMed  CAS  Google Scholar 

  • Müller WE (1981) The benzodiazepine receptor: an update. Pharmacology 22:153–161

    Article  PubMed  Google Scholar 

  • Ochs HR, Greenblatt DJ, Eckardt B, Harmatz JS, Shader RI (1983) Repeated diazepam dosing in cirrhotic patients: cumulation and sedation. Clin Pharmacol Ther 33:471–476

    Article  PubMed  CAS  Google Scholar 

  • Ochs HR, Greenblatt DJ, Lüttkenhorst M, Verburg-Ochs B (1984) Single and multiple dose kinetics of clobazam, and clinical effects during multiple dosage. Eur J Clin Pharmacol 26:499–503

    Article  PubMed  CAS  Google Scholar 

  • Reves JG, Fragen RH, Vinik HR, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62:310–324

    PubMed  CAS  Google Scholar 

  • Scavone JM, Friedman H, Greenblatt DJ, Shader RI (1987) Effect of age, body composition, and lipid solubility on benzodiazepine tissue distribution in rats. Arzneimittelforschung 37:2–6

    PubMed  CAS  Google Scholar 

  • Sellers EM, Naranjo CA, Khouw V, Greenblatt DJ (1982) Binding of benzodiazepines to plasma proteins. In: Usdin E, Skolnick P, Tallman JF, Greenblatt D, Paul SM (eds) Pharmacology of benzodiazepines. MacMillan, London, pp 271–284

    Google Scholar 

  • Sieghart W, Eichinger A, Riederer P, Jellinger K (1985) Comparison of benzodiazepine receptor binding in membranes from human or rat brain. Neuropharmacology 24:751–759

    Article  PubMed  CAS  Google Scholar 

  • Skolnick P, Paul SM (1982) Benzodiazepine receptors in the central nervous system. Int Rev Neurobiol 23:103–140

    Article  PubMed  CAS  Google Scholar 

  • Tallman JF, Paul SM, Skolnick P, Gallager DW (1980) Receptors for the age of anxiety: pharmacology of the benzodiazepines. Science 207:274–281

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendt, R.M., Greenblatt, D.J., Liebisch, D.C. et al. Determinants of benzodiazepine brain uptake: lipophilicity versus binding affinity. Psychopharmacology 93, 72–76 (1987). https://doi.org/10.1007/BF02439589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02439589

Key words

Navigation