Skip to main content
Log in

Summary

Gut flora and gut contents can be considered as a system with huge metabolic capacity, qualitatively and quantitatively different from the body cells and organs. That system changes along with life and nutrition, but despite broad investigation has not yet been defined satisfactorily. In many cases inter individual and intra individual differences in drug metabolism could be linked to variations in the gut flora metabolism. Gut flora metabolism of drugs and other xenobiotic metabolites excreted in bile is the key phase responsible for enterohepatic circulation.

In the last decade there has been more and more evidence for the crucial role of the gut flora cysteine conjugate β-lyase in the metabolism of cysteine conjugates. A new pathway for paracetamol cysteine conjugate metabolism has been directly linked with gut flora activity, as demonstrated in our studies.

Nowadays, it is quite clear that gut flora metabolism must be considered an integral part of drug metabolism and toxicity studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scheline R.R. (1973): Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol. Rev., 25, 451–523.

    PubMed  CAS  Google Scholar 

  2. Rowland I.R. (1988): Factors affectsing metabolic activity of the intestinal microflora. Drug Metab. Rev., 19, 243–261.

    Article  PubMed  CAS  Google Scholar 

  3. Drasar B.S. (1967): Cultivation of anaerobic intestinal bacteria. J. Path. Bact., 94, 417–427.

    Article  PubMed  CAS  Google Scholar 

  4. Aranki A., Syed S.A., Kenney E.B., Freter R. (1969): Isolation of bacteria from human gingiva and mouse caecum by means of a simplified glove box procedure. Appl. Micro., 17, 568–576.

    Google Scholar 

  5. Seeliger H.P.R., Werner H. (1963): Recherches quantitatives sur la flore intestinale de I'homme. Ann. Instit. Pasteur., 105, 911–936.

    CAS  Google Scholar 

  6. Smith H.W. (1965): Observations on the flora of the alimentary tract of animals and factors affecting its composition. J. Path. Bact., 89, 95–122

    Article  PubMed  CAS  Google Scholar 

  7. Drasar B.S., Shiner M., McLeod G.M. (1969): Tbe bacterial flora of the gastrointestinal tract in healthy and achlorhydric persons. Gastroenterology, 56, 71–79.

    PubMed  CAS  Google Scholar 

  8. Drasar B.S., Hill M.J., Williams R.E.O. (1970): The significance of the gut flora in safety testing of food additives. In: Metabolic aspects of food safety, Oxford: Blackwell Scientific, pp. 245–260.

    Google Scholar 

  9. Drasar B.S., Hill M.J. (1974): Human intestinal flora. London: Academic Press.

    Google Scholar 

  10. Moore W.E.C., Holdeman L.V. (1974): Human faecal flora: the normal flora of Japanese-Hawaiians. Appl. Microbiol., 27, 961.

    PubMed  CAS  Google Scholar 

  11. Finegold S.M., Flora D.J., Attebery H.R., Sutter L.V. (1975): Faecal bacteriology of colonic polyp patients and control patients. Cancer Res. 35, 3407–3417.

    PubMed  CAS  Google Scholar 

  12. Reddy B.S., Weisburger J.H., Wynder E.L. (1975): Effect of high risk and low risk diets for colon carcinogenesis of faecal microflora and steroids of man. J. Nutr., 105, 878–884.

    PubMed  CAS  Google Scholar 

  13. Savage D.C. (1977): Microbial ecology of gastmintestinal tract. Ann. Rev. Microbiol., 31, 107–133.

    Article  CAS  Google Scholar 

  14. Mitsuoka T. (1982): Recent trends in research on intestinal flora. Bifidobacteria Microfiora, 3, 3–24.

    Google Scholar 

  15. Drasar B.S. (1988): The bacterial flora of intestine. In: Rowland I.R., ed. Role of the gut flora in toxicity and cancer. London, Academic Press, pp. 23–38.

    Google Scholar 

  16. Scheline R.R. (1968): Drug metabolism by intestinal microorganisms. J. Pharm. Sci., 57, 2021–2037.

    Article  PubMed  CAS  Google Scholar 

  17. Smith R.L. (1971): The role of the gut flora in the conversion of inactive compound to active metabolites. In: Aldridge W.N., ed. A symposium on ‘Mechanisms of toxicity’. London: Macmillan, pp. 229–247.

    Google Scholar 

  18. Williams R.T. (1972): Toxicological implications of biotransformation by intestinal microfiora. Toxic. Appl. Pharmacol., 23, 769.

    Article  PubMed  CAS  Google Scholar 

  19. Renwick A.G. (1977): Microbial metabolism of drugs. In: Parke D.V., Smith R.L., eds. Drug metabolism #x2014; from microbes to man. Taylor and Francis. London, pp. 169–189.

    Google Scholar 

  20. Smith R.V. (1978): Metabolism of drugs and other foreign compounds by intestinal micro-organisms. World Rev. Nutr. Diet, 29, 60–76.

    PubMed  CAS  Google Scholar 

  21. Goldman P. (1981): The metabolism of xenobiotics by the intestinal flora. In: Gastrointestinal cancer: endogenous factors. Banbury Report 7. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 25–39

    Google Scholar 

  22. Rowland I.R. (1988): Role of the gut flora in toxicity and cancer. London: Academic Press

    Google Scholar 

  23. K.F., Tee L.B.G., Reeves P.T., Minchin R.F. (1990): Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol. Ther., 46, 67–93.

    Article  Google Scholar 

  24. Rowland I.R., Mallett A.K., Bearne C.A., Farthing M.J.G. (1986): Enzyme activities of the hindgut microflora of laboratory animals and man. Xenobiotica, 16, 519–523

    Article  PubMed  CAS  Google Scholar 

  25. Rowland I.R. (1986): Reduction by the gut microfiora of drug metabolism by the gut flora and man. Biochem. Pharmacol. 35, 27–32.

    Article  PubMed  CAS  Google Scholar 

  26. Kirk E. (1949): The quantity and composition of human colonic flatus. Gastroenterology 12, 782–749

    PubMed  CAS  Google Scholar 

  27. Sogaard H (1975): Hydrogen sulfide producing varients ofEscherichia coli. Acta Vet. Scand., 16, 31–38.

    PubMed  CAS  Google Scholar 

  28. Coates M.E., Drasar B.S., Mallet A.K., Rowland I.R. (1988): Methodological consideration for the study of bacterial metabolism. In: Rowland I.R., ed. Role of the gut flora in toxicity and cancer. London: Academic Press, pp. 1–21.

    Google Scholar 

  29. Rowland I.R., Mallett A.K., Wise A. (1985): The effect of diet on the mammalian gut flora and its metabolic activities. Crit. Rev. Toxicol. 16, 31–103.

    Article  PubMed  CAS  Google Scholar 

  30. Spink W.W., Hurd F.W., Jermsta J. (1940): In vitro conversion of prontosil-soluble to sulfanilamide by various types of micro-organism. Proc. Soc. Exp. Biol. Med., 43, 172–175.

    CAS  Google Scholar 

  31. Gingell R., Bridges J.W., Williams R.T. (1971): The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica 1, 143–156.

    Article  PubMed  CAS  Google Scholar 

  32. Alam A.N., Saha J.R., Dobkin J.F., Lindenbaum J. (1988): Interethnic variation in the metabolic inactivation of digoxin by the gut flora. Gastroenterology 95, 117–123.

    PubMed  CAS  Google Scholar 

  33. Mathan V.I., Wiederman J., Dobkin J.F., Lindenbaum J. (1989): Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut 30, 971–977.

    Article  PubMed  CAS  Google Scholar 

  34. Schultz S.G. (1984): A cellular model for active sodium absorbtion by mammalian colon. Ann. Rev. Physiol., 46, 435–451.

    Article  CAS  Google Scholar 

  35. Larsen G.L. (1988): Deconjugation of biliary metabolites by microfloral beta-glucuronidases, sulphatases and cysteine conjugate beta-lyases and their subsequent enterohepatic circulation. In: Rowland I.R., ed. Role of the gut flora in toxicity and cancer. London: Academic Press, pp. 79–107

    Google Scholar 

  36. Henning S.J., Hird F.J.R. (1972): Transport of acetate and butyrate in the hind-gut of rabbits. Biochem. J. 130, 791–796.

    PubMed  CAS  Google Scholar 

  37. McNeil N.I., Cummings J.H., James W.P.T. (1978): Short chain fatty acid absorbtion by human large intestine. Gut, 19, 819–822.

    Article  PubMed  CAS  Google Scholar 

  38. Roediger W.E.W. (1986): Interrelationship between bacteria and mucosa of the gastrointestinal trael. In: Hill M.J., ed. Microbial metabolism in the digestive tract. Boca Raton, Florida: CRC Press, pp. 201–209.

    Google Scholar 

  39. Hawksworth G., Drasar B.S., Hill M.J. (1971): Intestinal bacteria and the hydrolysis of glycosidic bonds. J. Med. Microbiol. 4, 451–459.

    Article  PubMed  CAS  Google Scholar 

  40. Kent T.H., Fischer L.J., Marr R. (1972): Glucuroridase activity in intestinal contents of rat and man and relationship to bacterial flora. Proc. Soc. Exp. Biol. Med., 140, 590–594.

    PubMed  CAS  Google Scholar 

  41. Gadelle D., Raibaud P., Sacquet E. (1985): Beta-glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl. Environ. Microbiol., 49, 682–685.

    PubMed  CAS  Google Scholar 

  42. Cole C.B., Fuller R., Mallet A.K., Rowland I.R. (1985): The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J. Appl. Bact., 59, 549–553.

    CAS  Google Scholar 

  43. Eriksson H. (1971): Absorbtion and enterohepatic circulation of neutral steroids in rat. Eur. J. Biochem., 19, 416–423.

    Article  PubMed  CAS  Google Scholar 

  44. Cowen A.E., Korman M.G., Hofman A.F., Cass O.W. (1975): Metabolism of lithocholate in healthy man. 1. Biotransformation and biliary excretion of intravenosly administered lithocholate, lithocholylglycine and their sulfates. Gastroenterol., 69, 59–66.

    CAS  Google Scholar 

  45. Strand L.P., Scheline R.R. (1975): The metabolism of vanilin and isovanilin in the rat. Xenobiotica, 5, 49–63.

    Article  PubMed  CAS  Google Scholar 

  46. Sim S.M., Back D.J. (1985): Intestinal absorbtion of oestrone oestrone glucuronide and oestrone sulphate in the ratin situ. I. Importance of hydrolytic enzymes on conjugate absorbtion. J. Steroid Biochem., 22, 781–788.

    Article  PubMed  CAS  Google Scholar 

  47. Larsen G.L., Bakke J.F. (1978): Studies on the origin of the methylsulfonyl containing metabolites from propachlor. J. Environ. Sci. Health., 5, 495–504.

    Google Scholar 

  48. Suzuki S., Tomisawa H., Ichihara S., Fukazawa H., Tateishi M. (1982): A C-S bond cleavage enzyme of cysteine conjugates in intestinal microorganisms. Biochem. Pharmacol., 31, 2137–2140.

    Article  PubMed  CAS  Google Scholar 

  49. Tomisawa H., Suzuki S., Ichihara S., Fukasawa H., Tateishi M. (1984): Purification and characterization of C-S lyase from Fusobacterium varium. J. Biol. Chem., 259, 2588–2593.

    PubMed  CAS  Google Scholar 

  50. Larsen G.L. (1985): Distribution of cysteine conjugate betalyase in gastrointestinal bacteria and in the environment. Xenobiotica, 15, 199–209.

    Article  PubMed  CAS  Google Scholar 

  51. Mikov M., Caldwell J., Dolphin C.T., Smith R.L. (1988): The role of in microflora in the formation of the methylthio adduct metabolites of paracetamol. Biochem. Pharmacol., 37, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  52. Mikov M., Caldwell J. (1990): Metabolism of paracetamol 3-cysteine in conventional and germ-free mice #x2014; the crucial role of intestinal microflora. Eur. J. Pharmacol., 183(4), 1206–1207.

    Article  Google Scholar 

  53. Kinouchi T., Kataoka K., Miyanishi K., Akimoto S., Ohnishi Y. (1992): Role of intestinal microflora in metabolism of glutathione conjugates of 1-nitropyrene 4,5-oxide and 1-nitropyrene 9,10-oxide. Tohoku J. Exp. Med., 168, 119–122.

    Article  PubMed  CAS  Google Scholar 

  54. Kinouchi T., Kataoka K., Miyanishi K., Akimoto S., Ohnishi Y. (1993): Biological activities of the intestinal niicroflora in mice treated with antibiotics or untreated and the effects of the microflora on absorbtion and metabolic activation of orally administered glutathione conjugates of K-region epoxides of 1-nitropyrene. Carcinogenesis, 14, 869–874.

    Article  PubMed  CAS  Google Scholar 

  55. Saari J.C., Schultze M.D. (1965): Clearage of S-(1,2-dichlorovinyl)-l-cysteine byEscherichia coli B. Arch. Biochem. Biophys., 109, 595–602.

    Article  PubMed  CAS  Google Scholar 

  56. Nishizuka Y. (1971): S-Alkyl-l-cysteine lyase (pseudomonas). Methods Enzymol, XVIIB, 470–474.

    Article  Google Scholar 

  57. Bakke J.E., Larsen G.L., Asbacher P.W., Rafter I.J., Gustafsson J.-A., Gustafsson B.F. (1981): Role of gut microflora in metabolism of glutathione conjugates of xenobiotics. In: Rosen J.D., Magee P.S., Casida J.E., eds. Sulfur in Pesticide Action and Metabolism. American Chemical Society Symposium Series No. 158, Washington, pp. 165–178.

  58. Larsen G.L., Larson J.D., Gustaffson J.-A. (1983): Cysteine conjugate beta-lyase in the gastrointestinal bacterium Pusobacterium necroforum. Xenobiotica, 13, 689–700.

    Article  PubMed  CAS  Google Scholar 

  59. Larsen O.L., Stevens J.L. (1985): Cysteine conjugate beta-lyase in the gastrointestinal bacterium Eubacterium limosum. Mol. Pharmacol., 29, 97–103.

    Google Scholar 

  60. Gram T.E., Okine L.K., Gram r.A. (1986): The metabolism of xenobiotics by certain extrahepatic organs and its relation to toxicity. Ann. Rev. Pharmacol. Toxicol., 26, 259–291.

    CAS  Google Scholar 

  61. Larsen G.L. (1985): Distribution of cysteine conjugate betalyase in gastrointestinal bacteria and in the environment. Xenobiotica, 15, 199–209.

    Article  PubMed  CAS  Google Scholar 

  62. Bakke J.E., Gustafsson J.-A. (1986): Role of intestinal flora in metabolism of agrocheniicals conjugated with glutatione. Xenobiotica, 16, 1047–1056.

    Article  PubMed  CAS  Google Scholar 

  63. Stevens J., Hayden P., Tailor G. (1986): The role of glutathione conjugate metabolism and cysteine conjugate beta-lyase in the mechanism of S-cysteine conjugate toxicity in LLC-PK1 cells. J. Biol. Chem., 261, 3325–3332.

    PubMed  CAS  Google Scholar 

  64. Bakke J.E. (1989): Metabolites derived from glutathione conjugation. In: Hutson D.H., Caldwell J., Paulson O.D., eds. Intermediary xenobiotic metabolism in animals: Methodology, mechanisms and significance. London: Taylor and Francis, pp. 205–224.

    Google Scholar 

  65. Bakke J.E. (1986): Catabolism of glutathione conjugates. In: Paulson G.D., Caldwell J., Hutson D.H., Menn J.J., eds. pp. 301–320.

  66. Stevens J., Jakoby W.B. (1982): Cysteine conjugate beta-lyase. Mol. Pharmacol., 23, 761–765.

    Google Scholar 

  67. Elfarra A.A., Lash L.H., Anders M.W. (1986): Metabolic activation and detoxication of nephrotoxic cysteine and homocysteine S-conjugates. Proc. Natl Acad. Sci., 83, 2667–2671.

    Article  PubMed  CAS  Google Scholar 

  68. van Bladeren P.J. (1988): Formation of toxic metabolites from drugs and other xenobiotics by glutathione conjugation. TIPS, 9, 295–299.

    PubMed  Google Scholar 

  69. Hoffmann K.-J., Baille T.A. (1988): The use of alkoxycarbonyl derivatives for the mass spectral analysis of drug-thioether metabolites. Studies with cysteine, mercapturic acid and glutathione conjugates of acetaminophen. Biomed. Environ. Mass Spectrometry, 15, 637–647.

    Article  CAS  Google Scholar 

  70. Dahlin D.C., Nelson S.D. (1982): Synthesis, decomposition kinetics and preliminary toxicological studies of pure N-acetyl-p-benzoquinone imine, a proposed toxic metabolite of acetaminophen. J. Med. Chem., 25, 885–886.

    Article  PubMed  CAS  Google Scholar 

  71. Dolphin C.T., Caldwell J., Smith R.L. (1987): Effect of poly rI:rC treatment upon the metabolism of [14C]-paracetamol in the BALB/c mouse. Biochem. Pharmac., 36, 3835–3840.

    Article  CAS  Google Scholar 

  72. Mikov M.M. (1991): In vitro metabolism of paracetamol-3-cysteine by conventional mice caecal contents. In: Xenobiotic metabolism and toxicity workshop of Balkan Countries. Novi Sad, pp. 71–72.

  73. Colucci D.F., Buyske D. (1965): The biotransformation of a sulfonamide to a mercaptan and to mercapturic acid and glucuronide conjugates. Biochem. Pharmac., 14, 457–466.

    Article  CAS  Google Scholar 

  74. Larson G.L., Bakke J.E., Feil V.J., Huwe J.K. (1988): In vitro metabolism of the methylthio group of 2-methylthiobenzothiazole by rat liver. Xenobiotica, 18, 313–322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikov, M. The metabolism of drugs by the gut flora. Eur. J. Drug Metab. Pharmacokinet. 19, 201–207 (1994). https://doi.org/10.1007/BF03188922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03188922

Keywords

Navigation