Skip to main content

Advertisement

Log in

Sulfatase activities towards the regulation of cell metabolism and signaling in mammals

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In higher vertebrates, sulfatases belong to a conserved family of enzymes that are involved in the regulation of cell metabolism and in developmental cell signaling. They cleave the sulfate from sulfate esters contained in hormones, proteins, and complex macromolecules. A highly conserved cysteine in their active site is post-translationally converted into formylglycine by the formylglycine-generating enzyme encoded by SUMF1 (sulfatase modifying factor 1). This post-translational modification activates all sulfatases. Sulfatases are extensively glycosylated proteins and some of them follow trafficking pathways through cells, being secreted and taken up by distant cells. Many proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates, which are sulfatase substrates. Indeed, sulfatases operate as decoding factors for a large amount of biological information contained in the structures of the sulfated sugar chains that are covalently linked to proteins and lipids. Modifications to these sulfate groups have pivotal roles in modulating specific signaling pathways and cell metabolism in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Diez-Roux G, Ballabio A (2005) Sulfatases and human disease. Annu Rev Genomics Hum Genet 6:355–379

    Article  PubMed  CAS  Google Scholar 

  2. Sardiello M, Annunziata I, Roma G, Ballabio A (2005) Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet 14:3203–3217

    Article  PubMed  CAS  Google Scholar 

  3. Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K (1999) Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 18:2084–2091

    Article  PubMed  CAS  Google Scholar 

  4. Landgrebe J, Dierks T, Schmidt B, von Figura K (2003) The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. Gene 316:47–56

    Article  PubMed  CAS  Google Scholar 

  5. Recksiek M, Selmer T, Dierks T, Schmidt B, von Figura K (1998) Sulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine. J Biol Chem 273:6096–6103

    Article  PubMed  CAS  Google Scholar 

  6. Waldow A, Schmidt B, Dierks T, von Bulow R, von Figura K (1999) Amino acid residues forming the active site of arylsulfatase A. Role in catalytic activity and substrate binding. J Biol Chem 274:12284–12288

    Article  PubMed  CAS  Google Scholar 

  7. Hanson SR, Best MD, Wong CH (2004) Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:5736–5763

    Article  PubMed  CAS  Google Scholar 

  8. Lukatela G, Krauss N, Theis K, Selmer T, Gieselmann V, von Figura K, Saenger W (1998) Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry 37:3654–3664

    Article  PubMed  CAS  Google Scholar 

  9. Stein C, Hille A, Seidel J, Rijnbout S, Waheed A, Schmidt B, Geuze H, von Figura K (1989) Cloning and expression of human steroid-sulfatase. J Biol Chem 264:13865–13872

    PubMed  CAS  Google Scholar 

  10. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  PubMed  CAS  Google Scholar 

  11. Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    PubMed  CAS  Google Scholar 

  12. Kornfeld S (1998) Diseases of abnormal protein glycosylation: an emerging area. J Clin Invest 101:1293–1295

    Article  PubMed  CAS  Google Scholar 

  13. Millat G, Froissart R, Maire I, Bozon D (1997) IDS transfer from overexpressing cells to IDS-deficient cells. Exp Cell Res 230:362–367

    Article  PubMed  CAS  Google Scholar 

  14. Tikkanen R, Enomaa N, Riikonen A, Ikonen E, Peltonen L (1995) Intracellular sorting of aspartylglucosaminidase: the role of N-linked oligosaccharides and evidence of Man-6-P-independent lysosomal targeting. DNA Cell Biol 14:305–312

    Article  PubMed  CAS  Google Scholar 

  15. Spiro RG (2004) Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation. Cell Mol Life Sci 61:1025–1041

    Article  PubMed  CAS  Google Scholar 

  16. Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S (2001) Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 292:1716–1718

    Article  PubMed  CAS  Google Scholar 

  17. Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S (2002) Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297:1700–1703

    Article  PubMed  CAS  Google Scholar 

  18. Brown WJ, Farquhar MG (1984) The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell 36:295–307

    Article  PubMed  CAS  Google Scholar 

  19. Brown WJ, Farquhar MG (1987) The distribution of 215-kilodalton mannose 6-phosphate receptors within cis (heavy) and trans (light) Golgi subfractions varies in different cell types. Proc Natl Acad Sci USA 84:9001–9005

    Article  PubMed  CAS  Google Scholar 

  20. Sahagian GG, Neufeld EF (1983) Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells. J Biol Chem 258:7121–7128

    PubMed  CAS  Google Scholar 

  21. Koster A, Saftig P, Matzner U, von Figura K, Peters C, Pohlmann R (1993) Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J 12:5219–5223

    PubMed  CAS  Google Scholar 

  22. Gabel CA, Goldberg DE, Kornfeld S (1983) Identification and characterization of cells deficient in the mannose 6-phosphate receptor: evidence for an alternate pathway for lysosomal enzyme targeting. Proc Natl Acad Sci USA 80:775–779

    Article  PubMed  CAS  Google Scholar 

  23. Nolan CM, Creek KE, Grubb JH, Sly WS (1987) Antibody to the phosphomannosyl receptor inhibits recycling of receptor in fibroblasts. J Cell Biochem 35:137–151

    Article  PubMed  CAS  Google Scholar 

  24. Stein M, Zijderhand-Bleekemolen JE, Geuze H, Hasilik A, von Figura K (1987) Mr 46,000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. EMBO J 6:2677–2681

    PubMed  CAS  Google Scholar 

  25. Dahms NM, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264:12115–12118

    PubMed  CAS  Google Scholar 

  26. Abeijon C, Mandon EC, Hirschberg CB (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus. Trends Biochem Sci 22:203–207

    Article  PubMed  CAS  Google Scholar 

  27. Honke K, Taniguchi N (2002) Sulfotransferases and sulfated oligosaccharides. Med Res Rev 22:637–654

    Article  PubMed  CAS  Google Scholar 

  28. Habuchi H, Habuchi O, Kimata K (2004) Sulfation pattern in glycosaminoglycan: does it have a code? Glycoconj J 21:47–52

    Article  PubMed  CAS  Google Scholar 

  29. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    PubMed  CAS  Google Scholar 

  30. Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  31. Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124:2623–2632

    PubMed  CAS  Google Scholar 

  32. Haerry TE, Heslip TR, Marsh JL, O’Connor MB (1997) Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124:3055–3064

    PubMed  CAS  Google Scholar 

  33. Lin X, Perrimon N (1999) Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400:281–284

    Article  PubMed  CAS  Google Scholar 

  34. Sen J, Goltz JS, Stevens L, Stein D (1998) Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal–ventral polarity. Cell 95:471–481

    Article  PubMed  CAS  Google Scholar 

  35. Merry CL, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RS, Wilson VA, Gallagher JT (2001) The molecular phenotype of heparan sulfate in the Hs2st-/- mutant mouse. J Biol Chem 276:35429–35434

    Article  PubMed  CAS  Google Scholar 

  36. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351

    Article  PubMed  CAS  Google Scholar 

  37. Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293:1663–1666

    Article  PubMed  CAS  Google Scholar 

  38. Wang S, Ai X, Freeman SD, Pownall ME, Lu Q, Kessler DS, Emerson CP Jr (2004) QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc Natl Acad Sci USA 101:4833–4838

    Article  PubMed  CAS  Google Scholar 

  39. Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 279:5604–5611

    Article  PubMed  CAS  Google Scholar 

  40. Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP Jr (2006) Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2. J Biol Chem 281:4969–4976

    Article  PubMed  CAS  Google Scholar 

  41. Lamanna WC, Frese MA, Balleininger M, Dierks T (2008) Sulf loss influences N-, 2-O-, and 6-O-sulfation of multiple heparan sulfate proteoglycans and modulates fibroblast growth factor signaling. J Biol Chem 283:27724–27735

    Article  PubMed  CAS  Google Scholar 

  42. Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatase in mice and humans. J Biol Chem 277:49175–49185

    Article  PubMed  CAS  Google Scholar 

  43. Lamanna WC, Baldwin RJ, Padva M, Kalus I, Ten Dam G, van Kuppevelt TH, Gallagher JT, von Figura K, Dierks T, Merry CL (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J 400:63–73

    Article  PubMed  CAS  Google Scholar 

  44. Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T (2007) The heparanome—the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 129:290–307

    Article  PubMed  CAS  Google Scholar 

  45. Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X (2007) Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. Dev Biol 311:464–477

    Article  PubMed  CAS  Google Scholar 

  46. Dai Y, Yang Y, MacLeod V, Yue X, Rapraeger AC, Shriver Z, Venkataraman G, Sasisekharan R, Sanderson RD (2005) HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo. J Biol Chem 280:40066–40073

    Article  PubMed  CAS  Google Scholar 

  47. Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE 2:e575

    Article  PubMed  CAS  Google Scholar 

  48. Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A (2008) Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn 237:339–353

    Article  PubMed  CAS  Google Scholar 

  49. Ghosh D (2007) Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci 64:2013–2022

    Article  PubMed  CAS  Google Scholar 

  50. Jatzkewitz H, Mehl E (1969) Cerebroside-sulphatase and arylsulphatase A deficiency in metachromatic leukodystrophy (ML). J Neurochem 16:19–28

    Article  PubMed  CAS  Google Scholar 

  51. Mehl E, Jatzkewitz H (1968) Cerebroside 3-sulfate as a physiological substrate of arylsulfatase A. Biochim Biophys Acta 151:619–627

    PubMed  CAS  Google Scholar 

  52. Roy AB (1975) l-ascorbic acid 2-sulphate. A substrate for mammalian arylsulphatases. Biochim Biophys Acta 377:356–363

    PubMed  CAS  Google Scholar 

  53. Farooqui AA, Mandel P (1977) Recent developments in the biochemistry of globoid and metachromatic leucodystrophies. Biomedicine 26:232–236

    PubMed  CAS  Google Scholar 

  54. Fluharty AL, Stevens RL, Goldstein EB, Kihara H (1979) The activity of arylsulfatase A and B on tyrosine O-sulfates. Biochim Biophys Acta 566:321–326

    PubMed  CAS  Google Scholar 

  55. Louis AI, Fluharty AL (1991) Activator-dependent hydrolysis of myelin cerebroside sulfate by arylsulfatase A. Dev Neurosci 13:41–46

    Article  PubMed  CAS  Google Scholar 

  56. Tantibhedhyangkul J, Weerachatyanukul W, Carmona E, Xu H, Anupriwan A, Michaud D, Tanphaichitr N (2002) Role of sperm surface arylsulfatase A in mouse sperm–zona pellucida binding. Biol Reprod 67:212–219

    Article  PubMed  CAS  Google Scholar 

  57. Matalon R, Arbogast B, Dorfman A (1974) Deficiency of chondroitin sulfate N-acetylgalactosamine 4-sulfate sulfatase in Maroteaux-Lamy syndrome. Biochem Biophys Res Commun 61:1450–1457

    Article  PubMed  CAS  Google Scholar 

  58. Matalon R, Arbogast B, Justice P, Brandt IK, Dorfman A (1974) Morquio’s syndrome: deficiency of a chondroitin sulfate N-acetylhexosamine sulfate sulfatase. Biochem Biophys Res Commun 61:759–765

    Article  PubMed  CAS  Google Scholar 

  59. O’Brien JF, Cantz M, Spranger J (1974) Maroteaux-Lamy disease (mucopolysaccharidosis VI), subtype A: deficiency of a N-acetylgalactosamine-4-sulfatase. Biochem Biophys Res Commun 60:1170–1177

    Article  PubMed  Google Scholar 

  60. Anson DS, Bielicki J (1999) Sulphamidase. Int J Biochem Cell Biol 31:363–367

    Article  PubMed  CAS  Google Scholar 

  61. Bielicki J, Hopwood JJ (1991) Human liver N-acetylgalactosamine 6-sulphatase. Purification and characterization. Biochem J 279:515–520

    PubMed  CAS  Google Scholar 

  62. Bielicki J, Fuller M, Guo XH, Morris CP, Hopewood JJ, Anson DS (1995) Expression, purification and characterization of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem J 311:333–339

    PubMed  CAS  Google Scholar 

  63. Litjens T, Bielicki J, Anson DS, Friderici K, Jones MZ, Hopwood JJ (1997) Expression, purification and characterization of recombinant caprine N-acetylglucosamine-6-sulphatase. Biochem J 327:89–94

    PubMed  CAS  Google Scholar 

  64. Gibson GJ, Saccone GT, Brooks DA, Clements PR, Hopwood JJ (1987) Human N-acetylgalactosamine-4-sulphate sulphatase. Purification, monoclonal antibody production and native and subunit Mr values. Biochem J 248:755–764

    PubMed  CAS  Google Scholar 

  65. Ginsberg LC, Di Ferrante DT, Di Ferrante N (1978) A substrate for direct measurement of l-iduronic acid 2-sulfate sulfatase. Carbohydr Res 64:225–235

    Article  PubMed  CAS  Google Scholar 

  66. Neufeld EFM (1999) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York

    Google Scholar 

  67. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C, Rubinsztein DC, Ballabio A (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129

    Article  PubMed  CAS  Google Scholar 

  68. Pacheco CD, Kunkel R, Lieberman AP (2007) Autophagy in Niemann-Pick C disease is dependent upon Beclin-1 and responsive to lipid trafficking defects. Hum Mol Genet 16:1495–1503

    Article  PubMed  CAS  Google Scholar 

  69. Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411

    Article  PubMed  CAS  Google Scholar 

  70. Erdal H, Berndtsson M, Castro J, Brunk U, Shoshan MC, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA 102:192–197

    Article  PubMed  CAS  Google Scholar 

  71. Tanaka K, Abe M, Sato Y (1999) Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 90:647–654

    PubMed  CAS  Google Scholar 

  72. Reed MJ, Purohit A, Woo LW, Newman SP, Potter BV (2005) Steroid sulfatase: molecular biology, regulation, and inhibition. Endocr Rev 26:171–202

    Article  PubMed  CAS  Google Scholar 

  73. Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res 63:2762–2770

    PubMed  CAS  Google Scholar 

  74. Pasqualini JR, Gelly C, Nguyen BL, Vella C (1989) Importance of estrogen sulfates in breast cancer. J Steroid Biochem 34:155–163

    Article  PubMed  CAS  Google Scholar 

  75. Ballabio A, Parenti G, Tippett P, Mondello C, Di Maio S, Tenore A, Andria G (1986) X-linked ichthyosis due to steroid sulphatase deficiency associated with Kallmann syndrome (hypogonadotropic hypogonadism and anosmia): linkage relationships with Xg and cloned DNA sequences from the distal short arm of the X chromosome. Hum Genet 72:237–240

    Article  PubMed  CAS  Google Scholar 

  76. Richard G (2004) Molecular genetics of the ichthyoses. Am J Med Genet C Semin Med Genet 131C:32–44

    Article  PubMed  Google Scholar 

  77. Franco B, Meroni G, Parenti G, Levilliers J, Bernard L, Gebbia M, Cox L, Maroteaux P, Sheffield L, Rappold GA, Andria G, Petit C, Ballabio A (1995) A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy. Cell 81:15–25

    Article  PubMed  CAS  Google Scholar 

  78. Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113:435–444

    Article  PubMed  CAS  Google Scholar 

  79. Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445–456

    Article  PubMed  CAS  Google Scholar 

  80. Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG (2005) Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell 121:541–552

    Article  PubMed  CAS  Google Scholar 

  81. Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T (2005) Molecular characterization of the human Calpha-formylglycine-generating enzyme. J Biol Chem 280:14900–14910

    Article  PubMed  CAS  Google Scholar 

  82. Zito E, Buono M, Pepe S, Settembre C, Annunziata I, Surace EM, Dierks T, Monti M, Cozzolino M, Pucci P, Ballabio A, Cosma MP (2007) Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum. EMBO J 26:2443–2453

    Article  PubMed  CAS  Google Scholar 

  83. Fraldi A, Zito E, Annunziata F, Lombardi A, Cozzolino M, Monti M, Spampanato C, Ballabio A, Pucci P, Sitia R, Cosma MP (2008) Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Hum Mol Genet 17:2610–2621

    Article  PubMed  CAS  Google Scholar 

  84. Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  PubMed  CAS  Google Scholar 

  85. Appenzeller C, Andersson H, Kappeler F, Hauri HP (1999) The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1:330–334

    Article  PubMed  CAS  Google Scholar 

  86. Appenzeller-Herzog C, Roche AC, Nufer O, Hauri HP (2004) pH-induced conversion of the transport lectin ERGIC-53 triggers glycoprotein release. J Biol Chem 279:12943–12950

    Article  PubMed  CAS  Google Scholar 

  87. Anelli T, Alessio M, Mezghrani A, Simmen T, Talamo F, Bachi A, Sitia R (2002) ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21:835–844

    Article  PubMed  CAS  Google Scholar 

  88. Gilchrist A, Au CE, Hiding J, Bell AW, Fernandez-Rodriguez J, Lesimple S, Nagaya H, Roy L, Gosline SJ, Hallett M, Paiement J, Kearney RE, Nilsson T, Bergeron JJ (2006) Quantitative proteomics analysis of the secretory pathway. Cell 127:1265–1281

    Article  PubMed  CAS  Google Scholar 

  89. Anelli T, Ceppi S, Bergamelli L, Cortini M, Masciarelli S, Valetti C, Sitia R (2007) Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis. EMBO J 26:4177–4188

    Article  PubMed  CAS  Google Scholar 

  90. Anelli T, Alessio M, Bachi A, Bergamelli L, Bertoli G, Camerini S, Mezghrani A, Ruffato E, Simmen T, Sitia R (2003) Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO J 22:5015–5022

    Article  PubMed  CAS  Google Scholar 

  91. Mariappan M, Radhakrishnan K, Dierks T, Schmidt B, von Figura K (2008) ERp44 mediates a thiol-independent retention of formylglycine-generating enzyme in the endoplasmic reticulum. J Biol Chem 283:6375–6383

    Article  PubMed  CAS  Google Scholar 

  92. Settembre C, Annunziata I, Spampanato C, Zarcone D, Cobellis G, Nusco E, Zito E, Tacchetti C, Cosma MP, Ballabio A (2007) Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Natl Acad Sci USA 104:4506–4511

    Article  PubMed  CAS  Google Scholar 

  93. Settembre C, Arteaga-Solis E, McKee MD, de Pablo R, Al Awqati Q, Ballabio A, Karsenty G (2008) Proteoglycan desulfation determines the efficiency of chondrocyte autophagy and the extent of FGF signaling during endochondral ossification. Genes Dev 22:2645–2650

    Article  PubMed  Google Scholar 

  94. Cardone M, Polito VA, Pepe S, Mann L, D’Azzo A, Auricchio A, Ballabio A, Cosma MP (2006) Correction of Hunter syndrome in the MPSII mouse model by AAV2/8-mediated gene delivery. Hum Mol Genet 15:1225–1236

    Article  PubMed  CAS  Google Scholar 

  95. Polito VA, Cosma MP (2009) IDS crossing of the blood–brain barrier corrects CNS defects in MPSII mice. Am J Hum Genet 85:296–301

    Article  PubMed  CAS  Google Scholar 

  96. Tessitore A, Faella A, O’Malley T, Cotugno G, Doria M, Kunieda T, Matarese G, Haskins M, Auricchio A (2008) Biochemical, pathological, and skeletal improvement of mucopolysaccharidosis VI after gene transfer to liver but not to muscle. Mol Ther 16:30–37

    Article  PubMed  CAS  Google Scholar 

  97. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S, Bordignon C, Naldini L (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113:1118–1129

    PubMed  CAS  Google Scholar 

  98. Fraldi A, Biffi A, Lombardi A, Visigalli I, Pepe S, Settembre C, Nusco E, Auricchio A, Naldini L, Ballabio A, Cosma MP (2007) SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochem J 405:305–312

    Google Scholar 

  99. Fraldi A, Hemsley K, Crawley A, Lombardi A, Lau A, Sutherland L, Auricchio A, Ballabio A, Hopwood JJ (2007) Functional correction of CNS lesions in an MPS-IIIA mouse model by intracerebral AAV-mediated delivery of sulfamidase and SUMF1 genes. Hum Mol Genet 16:2693–2702

    Article  PubMed  CAS  Google Scholar 

  100. Freiberg RA, Choate KA, Deng H, Alperin ES, Shapiro LJ, Khavari PA (1997) A model of corrective gene transfer in X-linked ichthyosis. Hum Mol Genet 6:927–933

    Article  PubMed  CAS  Google Scholar 

  101. Hernandez-Guzman FG, Higashiyama T, Pangborn W, Osawa Y, Ghosh D (2003) Structure of human estrone sulfatase suggests functional roles of membrane association. J Biol Chem 278:22989–22997

    Article  PubMed  CAS  Google Scholar 

  102. Bond CS, Clements PR, Ashby SJ, Collyer CA, Harrop SJ, Hopwood JJ, Guss JM (1997) Structure of a human lysosomal sulfatase. Structure 5:277–289

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank G. Diez-Roux and D. Di Bernardo for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pia Cosma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buono, M., Cosma, M.P. Sulfatase activities towards the regulation of cell metabolism and signaling in mammals. Cell. Mol. Life Sci. 67, 769–780 (2010). https://doi.org/10.1007/s00018-009-0203-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0203-3

Keywords

Navigation