Skip to main content

Advertisement

Log in

The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The cerebrospinal fluid (CSF) has attracted renewed interest as an active signaling milieu that regulates brain development, homeostasis, and disease. Advances in proteomics research have enabled an improved characterization of the CSF from development through adulthood, and key neurogenic signaling pathways that are transmitted via the CSF are now being elucidated. Due to its immediate contact with neural stem cells in the developing and adult brain, the CSF’s ability to swiftly distribute signals across vast distances in the central nervous system is opening avenues to novel and exciting therapeutic approaches. In this review, we will discuss the development of the choroid plexus-CSF system, and review the current literature on how the CSF actively regulates mammalian brain development, behavior, and responses to traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

BMI:

Body mass index

BMP:

Bone morphogenetic protein

Bmpr1a:

BMP receptor 1a

BrdU:

Bromodeoxyuridine

CNS:

Central nervous system

ChP:

Choroid plexus

CSF:

Cerebrospinal fluid

DG:

Dentate gyrus

ELISA:

Enzyme-linked immunosorbent assay

ERK1/2:

Extracellular signal-regulated kinase 1/2

Ecrg4:

Esophageal cancer-related gene-4

FGF:

Fibroblast growth factors

GDF:

Growth differentiation factors

GDNF:

Glial-derived neurotrophic factor

IGF:

Insulin-like growth factors

IGF1R:

IGF1 receptor

IGFBPs:

IGF-binding proteins

Irs2:

Insulin receptor substrate 2

LIF:

Leukemia inhibiting factor

Lmx1a:

LIM homeobox transcription factor 1, alpha

LV:

Lateral ventricle

MS:

Mass spectrometry

NEP:

Neuroepithelium

NGF:

Nerve growth factor

NT-3:

Neurotrophin 3

Pdk1:

Phosphoinositide-dependent kinase-1

PEDF:

Pigment epithelial derived factor

Pten:

Phosphatase and tensin homolog

RA:

Retinoic acid

Rhomb:

Rhombencephalon

sAPP:

Soluble amyloid precursor protein

Shh:

Sonic hedgehog

SCN:

Suprachiasmatic nucleus

SVZ:

Subventricular zone

Tel:

Telencephalon

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

TBI:

Traumatic brain injury

V:

Ventricle

VEGF:

Vascular endothelial growth factor

VZ:

Ventricular zone

Wnt1:

Wingless-type MMTV integration site family, member 1

References

  1. Liddelow SA (2011) Fluids and barriers of the CNS: a historical viewpoint. Fluids Barriers CNS 8(1):2

    Article  PubMed  CAS  Google Scholar 

  2. Woollam DH (1957) The historical significance of the cerebrospinal fluid. Med Hist 1(2):91–114

    PubMed  CAS  Google Scholar 

  3. Dohrmann GJ (1970) The choroid plexus: a historical review. Brain Res 18(2):197–218

    Article  PubMed  CAS  Google Scholar 

  4. Chodobski A, Szmydynger-Chodobska J (2001) Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 52(1):65–82

    Article  PubMed  CAS  Google Scholar 

  5. Lehtinen MK, Walsh CA (2011) Neurogenesis at the brain-cerebrospinal fluid interface. Annu Rev Cell Dev Biol 27:653–679

    Article  PubMed  CAS  Google Scholar 

  6. Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  PubMed  CAS  Google Scholar 

  7. Bailey P (1916) Morphology of the roofplate of the forebrain and the lateral choroid plexuses in the human embryo. J. Comp. Neurol 26:79–120

    Article  Google Scholar 

  8. Sturrock RR (1979) A morphological study of the development of the mouse choroid plexus. J Anat 129(Pt 4):777–793

    PubMed  CAS  Google Scholar 

  9. Kappers JA (1955) The development of the paraphysis cerebri in man with comments on its relationship to the intercolumnar tubercle and its significance for the origin of cystic tumors in the third ventricle. J Comp Neurol 102(2):425–509

    Article  PubMed  CAS  Google Scholar 

  10. Bayer SA, Altman J (2007) Atlas of human central nervous system development. vol 5, CRC Press, Boca Raton

  11. von Frowein J, Wizenmann A, Gotz M (2006) The transcription factors Emx1 and Emx2 suppress choroid plexus development and promote neuroepithelial cell fate. Dev Biol 296(1):239–252

    Article  CAS  Google Scholar 

  12. Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  PubMed  CAS  Google Scholar 

  13. Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR (2008) The blood-CSF barrier explained: when development is not immaturity. BioEssays 30(3):237–248

    Article  PubMed  CAS  Google Scholar 

  14. Awatramani R, Soriano P, Rodriguez C, Mai JJ, Dymecki SM (2003) Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet 35(1):70–75

    Article  PubMed  CAS  Google Scholar 

  15. Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107(23):10725–10730

    Article  PubMed  CAS  Google Scholar 

  16. Currle DS, Cheng X, Hsu CM, Monuki ES (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132(15):3549–3559

    Article  PubMed  CAS  Google Scholar 

  17. Landsberg RL, Awatramani RB, Hunter NL, Farago AF, DiPietrantonio HJ, Rodriguez CI, Dymecki SM (2005) Hindbrain rhombic lip is comprised of discrete progenitor cell populations allocated by Pax6. Neuron 48(6):933–947

    Article  PubMed  CAS  Google Scholar 

  18. Huang X, Ketova T, Fleming JT, Wang H, Dey SK, Litingtung Y, Chiang C (2009) Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development 136(15):2535–2543

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen CM, Dymecki SM (2010) Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol 340(2):430–437

    Article  PubMed  CAS  Google Scholar 

  20. Hunter NL, Dymecki SM (2007) Molecularly and temporally separable lineages form the hindbrain roof plate and contribute differentially to the choroid plexus. Development 134(19):3449–3460

    Article  PubMed  CAS  Google Scholar 

  21. Hebert JM, Mishina Y, McConnell SK (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35(6):1029–1041

    Article  PubMed  CAS  Google Scholar 

  22. Cheng X, Hsu CM, Currle DS, Hu JS, Barkovich AJ, Monuki ES (2006) Central roles of the roof plate in telencephalic development and holoprosencephaly. J Neurosci 26(29):7640–7649

    Article  PubMed  CAS  Google Scholar 

  23. Cushing H (1914) Studies on the Cerebro-Spinal Fluid : I. Introduction. J Med Res 31(1):1–19

    PubMed  CAS  Google Scholar 

  24. Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57(1):188–198

    Article  PubMed  CAS  Google Scholar 

  25. Lowery LA, Sive H (2009) Totally tubular: the mystery behind function and origin of the brain ventricular system. BioEssays 31(4):446–458

    Article  PubMed  Google Scholar 

  26. Pexieder T, Jelinek R (1970) Pressure of the CSF and the morphogenesis of the CNS. II. Pressure necessary for normal development of brain vesicles. Folia Morphol (Praha) 18(2):181–192

    CAS  Google Scholar 

  27. Desmond ME, Levitan ML, Haas AR (2005) Internal luminal pressure during early chick embryonic brain growth: descriptive and empirical observations. Anat Rec A Discov Mol Cell Evol Biol 285(2):737–747

    PubMed  Google Scholar 

  28. Mashayekhi F, Draper CE, Bannister CM, Pourghasem M, Owen-Lynch PJ, Miyan JA (2002) Deficient cortical development in the hydrocephalic Texas (H-Tx) rat: a role for CSF. Brain 125(Pt 8):1859–1874

    Article  PubMed  Google Scholar 

  29. Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA (2003) Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain 126(Pt 3):623–631

    Article  PubMed  Google Scholar 

  30. Pappenheimer JR, Miller TB, Goodrich CA (1967) Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci U S A 58(2):513–517

    Article  PubMed  CAS  Google Scholar 

  31. Lerner RA, Siuzdak G, Prospero-Garcia O, Henriksen SJ, Boger DL, Cravatt BF (1994) Cerebrodiene: a brain lipid isolated from sleep-deprived cats. Proc Natl Acad Sci U S A 91(20):9505–9508

    Article  PubMed  CAS  Google Scholar 

  32. Cravatt BF, Prospero-Garcia O, Siuzdak G, Gilula NB, Henriksen SJ, Boger DL, Lerner RA (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268(5216):1506–1509

    Article  PubMed  CAS  Google Scholar 

  33. Basile AS, Hanus L, Mendelson WB (1999) Characterization of the hypnotic properties of oleamide. NeuroReport 10(5):947–951

    Article  PubMed  CAS  Google Scholar 

  34. Mendelson WB, Basile AS (1999) The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist. NeuroReport 10(15):3237–3239

    Article  PubMed  CAS  Google Scholar 

  35. Laposky AD, Homanics GE, Basile A, Mendelson WB (2001) Deletion of the GABA(A) receptor beta 3 subunit eliminates the hypnotic actions of oleamide in mice. NeuroReport 12(18):4143–4147

    Article  PubMed  CAS  Google Scholar 

  36. Leggett JD, Aspley S, Beckett SR, D’Antona AM, Kendall DA (2004) Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol 141(2):253–262

    Article  PubMed  CAS  Google Scholar 

  37. Mendelson WB, Basile AS (2001) The hypnotic actions of the fatty acid amide, oleamide. Neuropsychopharmacology 25(5 Suppl):S36–S39

    Article  PubMed  CAS  Google Scholar 

  38. Berridge CW, Espana RA, Vittoz NM (2010) Hypocretin/orexin in arousal and stress. Brain Res 1314:91–102

    Article  PubMed  CAS  Google Scholar 

  39. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    Article  PubMed  CAS  Google Scholar 

  40. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  PubMed  CAS  Google Scholar 

  41. Dauvilliers Y, Baumann CR, Carlander B, Bischof M, Blatter T, Lecendreux M, Maly F, Besset A, Touchon J, Billiard M, Tafti M, Bassetti CL (2003) CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry 74(12):1667–1673

    Article  PubMed  CAS  Google Scholar 

  42. Bourgin P, Huitron-Resendiz S, Spier AD, Fabre V, Morte B, Criado JR, Sutcliffe JG, Henriksen SJ, de Lecea L (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 20(20):7760–7765

    PubMed  CAS  Google Scholar 

  43. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter AJ, Porter RA, Upton N (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci U S A 96(19):10911–10916

    Article  PubMed  CAS  Google Scholar 

  44. Piper DC, Upton N, Smith MI, Hunter AJ (2000) The novel brain neuropeptide, orexin-A, modulates the sleep-wake cycle of rats. Eur J Neurosci 12(2):726–730

    Article  PubMed  CAS  Google Scholar 

  45. Espana RA, Baldo BA, Kelley AE, Berridge CW (2001) Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience 106(4):699–715

    Article  PubMed  CAS  Google Scholar 

  46. Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382(6594):810–813

    Article  PubMed  CAS  Google Scholar 

  47. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294(5551):2511–2515

    Article  PubMed  CAS  Google Scholar 

  48. Kraves S, Weitz CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9(2):212–219

    Article  PubMed  CAS  Google Scholar 

  49. Reiter RJ, Tan DX, Poeggeler B, Menendez-Pelaez A, Chen LD, Saarela S (1994) Melatonin as a free radical scavenger: implications for aging and age-related diseases. Ann N Y Acad Sci 719:1–12

    Article  PubMed  CAS  Google Scholar 

  50. Tricoire H, Locatelli A, Chemineau P, Malpaux B (2002) Melatonin enters the cerebrospinal fluid through the pineal recess. Endocrinology 143(1):84–90

    Article  PubMed  CAS  Google Scholar 

  51. Tan DX, Manchester LC, Sanchez-Barcelo E, Mediavilla MD, Reiter RJ (2010) Significance of high levels of endogenous melatonin in Mammalian cerebrospinal fluid and in the central nervous system. Curr Neuropharmacol 8(3):162–167

    Article  PubMed  CAS  Google Scholar 

  52. Seifman MA, Adamides AA, Nguyen PN, Vallance SA, Cooper DJ, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC (2008) Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. J Cereb Blood Flow Metab 28(4):684–696

    Article  PubMed  CAS  Google Scholar 

  53. Martin FH, Seoane JR, Baile CA (1973) Feeding in satiated sheep elicited by intraventricular injections of CSF from fasted sheep. Life Sci 13(2):177–184

    Article  PubMed  CAS  Google Scholar 

  54. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282(5738):503–505

    Article  PubMed  CAS  Google Scholar 

  55. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med 2(5):589–593

    Article  PubMed  CAS  Google Scholar 

  56. Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632

    Article  PubMed  CAS  Google Scholar 

  57. Cavanagh ME, Cornelis ME, Dziegielewska KM, Evans CA, Lorscheider FL, Mollgard K, Reynolds ML, Saunders NR (1983) Comparison of proteins in CSF of lateral and IVth ventricles during early development of fetal sheep. Brain Res 313(2):159–167

    PubMed  CAS  Google Scholar 

  58. Dziegielewska KM, Evans CA, Lai PC, Lorscheider FL, Malinowska DH, Mollgard K, Saunders NR (1981) Proteins in cerebrospinal fluid and plasma of fetal rats during development. Dev Biol 83(1):193–200

    Article  PubMed  CAS  Google Scholar 

  59. Parada C, Gato A, Bueno D (2005) Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J Proteome Res 4(6):2420–2428

    Article  PubMed  CAS  Google Scholar 

  60. Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6(9):3537–3548

    Article  PubMed  CAS  Google Scholar 

  61. Zheng, W, Chodobski A (2005) The blood-cerebrospinal fluid barrier. Taylor & Francis, Boca Raton

  62. Grove EA, Fukuchi-Shimogori T (2003) Generating the cerebral cortical area map. Annu Rev Neurosci 26:355–380

    Article  PubMed  CAS  Google Scholar 

  63. Wolpert L (1996) One hundred years of positional information. Trends Genet 12(9):359–364

    Article  PubMed  CAS  Google Scholar 

  64. Chenn A, Zhang YA, Chang BT, McConnell SK (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 11(4):183–193

    Article  PubMed  CAS  Google Scholar 

  65. Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA (2010) FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 137(20):3439–3448

    Article  PubMed  CAS  Google Scholar 

  66. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69(5):893–905

    Article  PubMed  CAS  Google Scholar 

  67. Martin C, Bueno D, Alonso MI, Moro JA, Callejo S, Parada C, Martin P, Carnicero E, Gato A (2006) FGF2 plays a key role in embryonic cerebrospinal fluid trophic properties over chick embryo neuroepithelial stem cells. Dev Biol 297(2):402–416

    Article  PubMed  CAS  Google Scholar 

  68. Salehi Z, Mashayekhi F, Naji M, Pandamooz S (2009) Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci 16(7):950–953

    Article  PubMed  CAS  Google Scholar 

  69. Huang X, Liu J, Ketova T, Fleming JT, Grover VK, Cooper MK, Litingtung Y, Chiang C (2010) Transventricular delivery of Sonic hedgehog is essential to cerebellar ventricular zone development. Proc Natl Acad Sci U S A 107(18):8422–8427

    Article  PubMed  CAS  Google Scholar 

  70. Parada C, Gato A, Bueno D (2008) All-trans retinol and retinol-binding protein from embryonic cerebrospinal fluid exhibit dynamic behaviour during early central nervous system development. NeuroReport 19(9):945–950

    Article  PubMed  Google Scholar 

  71. Mashayekhi F, Azari M, Moghadam LM, Yazdankhah M, Naji M, Salehi Z (2009) Changes in cerebrospinal fluid nerve growth factor levels during chick embryonic development. J Clin Neurosci 16(10):1334–1337

    Article  PubMed  CAS  Google Scholar 

  72. Hatta T, Matsumoto A, Ono A, Udagawa J, Nimura M, Hashimoto R, Otani H (2006) Quantitative analyses of leukemia inhibitory factor in the cerebrospinal fluid in mouse embryos. NeuroReport 17(18):1863–1866

    Article  PubMed  CAS  Google Scholar 

  73. Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023

    PubMed  CAS  Google Scholar 

  74. Tao Y, Black IB, DiCicco-Bloom E (1997) In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J Neurobiol 33(3):289–296

    Article  PubMed  CAS  Google Scholar 

  75. Holm NR, Hansen LB, Nilsson C, Gammeltoft S (1994) Gene expression and secretion of insulin-like growth factor-II and insulin-like growth factor binding protein-2 from cultured sheep choroid plexus epithelial cells. Brain Res Mol Brain Res 21(1–2):67–74

    Article  PubMed  CAS  Google Scholar 

  76. Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215(5108):1375–1376

    Article  PubMed  CAS  Google Scholar 

  77. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75(1):73–82

    PubMed  CAS  Google Scholar 

  78. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64(4):849–859

    Article  PubMed  CAS  Google Scholar 

  79. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316(5821):112–115

    Article  PubMed  CAS  Google Scholar 

  80. Weber MM, Melmed S, Rosenbloom J, Yamasaki H, Prager D (1992) Rat somatotroph insulin-like growth factor-II (IGF-II) signaling: role of the IGF-I receptor. Endocrinology 131(5):2147–2153

    Article  PubMed  CAS  Google Scholar 

  81. Kappeler L, De Magalhaes Filho C, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6(10):e254

    Article  PubMed  CAS  Google Scholar 

  82. Liu W, Ye P, O’Kusky JR, D’Ercole AJ (2009) Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 87(13):2821–2832

    Article  PubMed  CAS  Google Scholar 

  83. Hodge RD, D’Ercole AJ, O’Kusky JR (2004) Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci 24(45):10201–10210

    Article  PubMed  CAS  Google Scholar 

  84. Mairet-Coello G, Tury A, DiCicco-Bloom E (2009) Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci 29(3):775–788

    Article  PubMed  CAS  Google Scholar 

  85. Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O’Kusky JR, D’Ercole AJ (2004) In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 19(8):2056–2068

    Article  PubMed  Google Scholar 

  86. Joseph D’Ercole A, Ye P (2008) Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 149(12):5958–5962

    Article  PubMed  CAS  Google Scholar 

  87. Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092

    PubMed  CAS  Google Scholar 

  88. Chalhoub N, Zhu G, Zhu X, Baker SJ (2009) Cell type specificity of PI3K signaling in Pdk1- and Pten-deficient brains. Genes Dev 23(14):1619–1624

    Article  PubMed  CAS  Google Scholar 

  89. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294(5549):2186–2189

    Article  PubMed  CAS  Google Scholar 

  90. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11(5):951–966

    Article  PubMed  CAS  Google Scholar 

  91. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498

    Article  PubMed  CAS  Google Scholar 

  92. McKelvie PA, Rosen KM, Kinney HC, Villa-Komaroff L (1992) Insulin-like growth factor II expression in the developing human brain. J Neuropathol Exp Neurol 51(4):464–471

    Article  PubMed  CAS  Google Scholar 

  93. Stylianopoulou F, Herbert J, Soares MB, Efstratiadis A (1988) Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci U S A 85(1):141–145

    Article  PubMed  CAS  Google Scholar 

  94. Dugas JC, Mandemakers W, Rogers M, Ibrahim A, Daneman R, Barres BA (2008) A novel purification method for CNS projection neurons leads to the identification of brain vascular cells as a source of trophic support for corticospinal motor neurons. J Neurosci 28(33):8294–8305

    Article  PubMed  CAS  Google Scholar 

  95. Chell JM, Brand AH (2008) Forever young: death-defying neuroblasts. Cell 133(5):769–771

    Article  PubMed  CAS  Google Scholar 

  96. Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471(7339):508–512

    Article  PubMed  CAS  Google Scholar 

  97. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126(14):3089–3100

    PubMed  Google Scholar 

  98. Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9(8):445–448

    Article  PubMed  CAS  Google Scholar 

  99. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22(1):103–114

    Article  PubMed  CAS  Google Scholar 

  100. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10(9):940–954

    PubMed  CAS  Google Scholar 

  101. Haskell GT, LaMantia AS (2005) Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. J Neurosci 25(33):7636–7647

    Article  PubMed  CAS  Google Scholar 

  102. Ribes V, Wang Z, Dolle P, Niederreither K (2006) Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development 133(2):351–361

    Article  PubMed  CAS  Google Scholar 

  103. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, Folias AE, Choe Y, May SR, Kume T, Napoli JL, Peterson AS, Pleasure SJ (2009) Retinoic acid from the meninges regulates cortical neuron generation. Cell 139(3):597–609

    Article  PubMed  CAS  Google Scholar 

  104. Radakovits R, Barros CS, Belvindrah R, Patton B, Muller U (2009) Regulation of radial glial survival by signals from the meninges. J Neurosci 29(24):7694–7705

    Article  PubMed  CAS  Google Scholar 

  105. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10(1):93–101

    Article  PubMed  CAS  Google Scholar 

  106. Freese JL, Pino D, Pleasure SJ (2010) Wnt signaling in development and disease. Neurobiol Dis 38(2):148–153

    Article  PubMed  CAS  Google Scholar 

  107. Wang J, Wynshaw-Boris A (2004) The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet Dev 14(5):533–539

    Article  PubMed  CAS  Google Scholar 

  108. Zhou CJ, Borello U, Rubenstein JL, Pleasure SJ (2006) Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience 142(4):1119–1131

    Article  PubMed  CAS  Google Scholar 

  109. Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004) Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131(22):5639–5647

    Article  PubMed  CAS  Google Scholar 

  110. Levine AJ, Brivanlou AH (2006) GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos. Development 133(2):209–216

    Article  PubMed  CAS  Google Scholar 

  111. Johanson C, Stopa E, Baird A, Sharma H (2011) Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm 118(1):115–133

    Article  PubMed  CAS  Google Scholar 

  112. Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F (2004) Alterations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol 186(2):221–234

    Article  PubMed  CAS  Google Scholar 

  113. Madathil SK, Evans HN, Saatman KE (2010) Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotrauma 27(1):95–107

    Article  PubMed  Google Scholar 

  114. Sandberg Nordqvist AC, von Holst H, Holmin S, Sara VR, Bellander BM, Schalling M (1996) Increase of insulin-like growth factor (IGF)-1, IGF binding protein-2 and -4 mRNAs following cerebral contusion. Brain Res Mol Brain Res 38(2):285–293

    Article  PubMed  CAS  Google Scholar 

  115. Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A (1999) Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140(1):520–532

    Article  PubMed  CAS  Google Scholar 

  116. Endoh M, Pulsinelli WA, Wagner JA (1994) Transient global ischemia induces dynamic changes in the expression of bFGF and the FGF receptor. Brain Res Mol Brain Res 22(1–4):76–88

    Article  PubMed  CAS  Google Scholar 

  117. Lin TN, Te J, Lee M, Sun GY, Hsu CY (1997) Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res 49(1–2):255–265

    Article  PubMed  CAS  Google Scholar 

  118. Chiaretti A, Antonelli A, Riccardi R, Genovese O, Pezzotti P, Di Rocco C, Tortorolo L, Piedimonte G (2008) Nerve growth factor expression correlates with severity and outcome of traumatic brain injury in children. Eur J Paediatr Neurol 12(3):195–204

    Article  PubMed  Google Scholar 

  119. Patterson SL, Grady MS, Bothwell M (1993) Nerve growth factor and a fibroblast growth factor-like neurotrophic activity in cerebrospinal fluid of brain injured human patients. Brain Res 605(1):43–49

    Article  PubMed  CAS  Google Scholar 

  120. Morganti-Kossmann MC, Hans VH, Lenzlinger PM, Dubs R, Ludwig E, Trentz O, Kossmann T (1999) TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma 16(7):617–628

    Article  PubMed  CAS  Google Scholar 

  121. Pasinetti GM, Nichols NR, Tocco G, Morgan T, Laping N, Finch CE (1993) Transforming growth factor beta 1 and fibronectin messenger RNA in rat brain: responses to injury and cell-type localization. Neuroscience 54(4):893–907

    Article  PubMed  CAS  Google Scholar 

  122. Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J neuroinflammation 7:62

    Article  PubMed  CAS  Google Scholar 

  123. Cheng Q, Di Liberto V, Caniglia G, Mudo G (2008) Time-course of GDNF and its receptor expression after brain injury in the rat. Neurosci Lett 439(1):24–29

    Article  PubMed  CAS  Google Scholar 

  124. Yang K, Perez-Polo JR, Mu XS, Yan HQ, Xue JJ, Iwamoto Y, Liu SJ, Dixon CE, Hayes RL (1996) Increased expression of brain-derived neurotrophic factor but not neurotrophin-3 mRNA in rat brain after cortical impact injury. J Neurosci Res 44(2):157–164

    Article  PubMed  CAS  Google Scholar 

  125. Korhonen L, Riikonen R, Nawa H, Lindholm D (1998) Brain derived neurotrophic factor is increased in cerebrospinal fluid of children suffering from asphyxia. Neurosci Lett 240(3):151–154

    Article  PubMed  CAS  Google Scholar 

  126. Mocchetti I, Wrathall JR (1995) Neurotrophic factors in central nervous system trauma. J Neurotrauma 12(5):853–870

    Article  PubMed  CAS  Google Scholar 

  127. Pasarica D, Gheorghiu M, Toparceanu F, Bleotu C, Ichim L, Trandafir T (2005) Neurotrophin-3, TNF-alpha and IL-6 relations in serum and cerebrospinal fluid of ischemic stroke patients. Roum Arch Microbiol Immunol 64(1–4):27–33

    PubMed  CAS  Google Scholar 

  128. Royo NC, Conte V, Saatman KE, Shimizu S, Belfield CM, Soltesz KM, Davis JE, Fujimoto ST, McIntosh TK (2006) Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection. Eur J Neurosci 23(5):1089–1102

    Article  PubMed  CAS  Google Scholar 

  129. Shore PM, Jackson EK, Wisniewski SR, Clark RS, Adelson PD, Kochanek PM (2004).Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery 54(3): 605–611 (discussion 611–2)

    Google Scholar 

  130. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Nat Acad Sci USA 97(19):10526–10531

    Article  PubMed  CAS  Google Scholar 

  131. Juul SE, Stallings SA, Christensen RD (1999) Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury. Pediatr Res 46(5):543–547

    Article  PubMed  CAS  Google Scholar 

  132. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Nat Acad Sci USA 95(8):4635–4640

    Article  PubMed  CAS  Google Scholar 

  133. Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ (1994) The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 8(4):419–425

    Article  PubMed  CAS  Google Scholar 

  134. Sriram K, O’Callaghan JP (2007) Divergent roles for tumor necrosis factor-alpha in the brain. J neuroimmune pharmacol: Off J Soc Neuroimmune Pharmacol 2(2):140–153

    Google Scholar 

  135. Stover JF, Schoning B, Beyer TF, Woiciechowsky C, Unterberg AW (2000) Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-alpha in relation to brain edema and contusion following controlled cortical impact injury in rats. Neurosci Lett 288(1):25–28

    Article  PubMed  CAS  Google Scholar 

  136. Chasseigneaux S, Allinquant B (2012) Functions of Abeta, sAPPalpha and sAPPbeta: similarities and differences. J Neurochem 120(Suppl 1):99–108

    Article  PubMed  CAS  Google Scholar 

  137. Olsson A, Csajbok L, Ost M, Hoglund K, Nylen K, Rosengren L, Nellgard B, Blennow K (2004) Marked increase of beta-amyloid (1–42) and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J Neurol 251(7):870–876

    Article  PubMed  CAS  Google Scholar 

  138. Chiaretti A, Antonelli A, Genovese O, Pezzotti P, Rocco CD, Viola L, Riccardi R (2008) Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. J Trauma 65(1):80–85

    Article  PubMed  CAS  Google Scholar 

  139. Chiaretti A, Barone G, Riccardi R, Antonelli A, Pezzotti P, Genovese O, Tortorolo L, Conti G (2009) NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 72(7):609–616

    Article  PubMed  CAS  Google Scholar 

  140. Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci U S A 85(1):265–269

    Article  PubMed  CAS  Google Scholar 

  141. Valentino KL, Ocrant I, Rosenfeld RG (1990) Developmental expression of insulin-like growth factor-II receptor immunoreactivity in the rat central nervous system. Endocrinology 126(2):914–920

    Article  PubMed  CAS  Google Scholar 

  142. Wood TL, Brown AL, Rechler MM, Pintar JE (1990) The expression pattern of an insulin-like growth factor (IGF)-binding protein gene is distinct from IGF-II in the midgestational rat embryo. Mol Endocrinol 4(8):1257–1263

    Article  PubMed  CAS  Google Scholar 

  143. Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM, Rosenfeld RG (1996) Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28(6):619–637

    Article  PubMed  CAS  Google Scholar 

  144. Chesik D, De Keyser J, Wilczak N (2007) Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis. Cytokine Growth Factor Rev 18(3–4):267–278

    Article  PubMed  CAS  Google Scholar 

  145. Gonzalez AM, Podvin S, Lin SY, Miller MC, Botfield H, Leadbeater WE, Roberton A, Dang X, Knowling SE, Cardenas-Galindo E, Donahue JE, Stopa EG, Johanson CE, Coimbra R, Eliceiri BP, Baird A (2011) Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS 8(1):6

    Article  PubMed  CAS  Google Scholar 

  146. Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, Kurabi A, Boissaud-Cooke M, Rossi R, Leadbeater WE, Johanson CE, Coimbra R, Stopa EG, Eliceiri BP, Baird A (2011) Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS ONE 6(9):e24609

    Article  PubMed  CAS  Google Scholar 

  147. Li LW, Yu XY, Yang Y, Zhang CP, Guo LP, Lu SH (2009) Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo. Int J Cancer 125(7):1505–1513

    Article  PubMed  CAS  Google Scholar 

  148. Sabatier R, Finetti P, Adelaide J, Guille A, Borg JP, Chaffanet M, Lane L, Birnbaum D, Bertucci F (2011) Down-regulation of ECRG4, a candidate tumor suppressor gene, in human breast cancer. PLoS ONE 6(11):e27656

    Article  PubMed  CAS  Google Scholar 

  149. Kujuro Y, Suzuki N, Kondo T (2010) Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proc Natl Acad Sci U S A 107(18):8259–8264

    Article  PubMed  CAS  Google Scholar 

  150. Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Hagood S, Hamm R, Colello RJ (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216(1):56–65

    Article  PubMed  CAS  Google Scholar 

  151. Wada K, Sugimori H, Bhide PG, Moskowitz MA, Finklestein SP (2003) Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats. Stroke 34(11):2722–2728

    Article  PubMed  CAS  Google Scholar 

  152. Watanabe T, Okuda Y, Nonoguchi N, Zhao MZ, Kajimoto Y, Furutama D, Yukawa H, Shibata MA, Otsuki Y, Kuroiwa T, Miyatake S (2004) Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24(11):1205–1213

    Article  PubMed  CAS  Google Scholar 

  153. Sun D, Bullock MR, Altememi N, Zhou Z, Hagood S, Rolfe A, McGinn MJ, Hamm R, Colello RJ (2010) The effect of epidermal growth factor in the injured brain after trauma in rats. J Neurotrauma 27(5):923–938

    Article  PubMed  Google Scholar 

  154. Dixon CE, Flinn P, Bao J, Venya R, Hayes RL (1997) Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Exp Neurol 146(2):479–490

    Article  PubMed  CAS  Google Scholar 

  155. Araujo DM, Hilt DC (1997) Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington’s disease. Neuroscience 81(4):1099–1110

    Article  PubMed  CAS  Google Scholar 

  156. Lee C, Agoston DV (2010) Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. J Neurotrauma 27(3):541–553

    Article  PubMed  Google Scholar 

  157. Schabitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17(5):500–506

    Article  PubMed  CAS  Google Scholar 

  158. Sharma HS, Johanson CE (2007) Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann N Y Acad Sci 1122:112–129

    Article  PubMed  CAS  Google Scholar 

  159. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M, Wyns S, Manka D, Vermeulen K, Van Den Bosch L, Mertens N, Schmitz C, Robberecht W, Conway EM, Collen D, Moons L, Carmeliet P (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92

    Article  PubMed  CAS  Google Scholar 

  160. Takeshima Y, Nakamura M, Miyake H, Tamaki R, Inui T, Horiuchi K, Wajima D, Nakase H (2011) Neuroprotection with intraventricular brain-derived neurotrophic factor in rat venous occlusion model. Neurosurgery 68(5):1334–1341

    PubMed  Google Scholar 

  161. Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30(5):1008–1016

    Article  PubMed  CAS  Google Scholar 

  162. Kolb B, Morshead C, Gonzalez C, Kim M, Gregg C, Shingo T, Weiss S (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27(5):983–997

    PubMed  CAS  Google Scholar 

  163. Sun L, Lee J, Fine HA (2004) Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest 113(9):1364–1374

    PubMed  CAS  Google Scholar 

  164. Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH 2nd, McLoon LK (2010) Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 18(3):179–190

    Article  PubMed  CAS  Google Scholar 

  165. Cheng X, Wang Z, Yang J, Ma M, Lu T, Xu G, Liu X (2011) Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res 33(7):675–680

    Article  PubMed  CAS  Google Scholar 

  166. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Google Scholar 

  167. Lochhead JJ, Thorne RG (2011) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev (in press)

  168. Ma M, Ma Y, Yi X, Guo R, Zhu W, Fan X, Xu G, Frey WH 2nd, Liu X (2008) Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neurosci 9:117

    Article  PubMed  CAS  Google Scholar 

  169. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, Plymate SR, Cherrier MM, Schellenberg GD, Frey WH 2nd, Craft S (2008) Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis 13(3):323–331

    PubMed  CAS  Google Scholar 

  170. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6):440–448

    Article  PubMed  CAS  Google Scholar 

  171. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496

    Article  PubMed  CAS  Google Scholar 

  172. Hanson LR, Frey WH 2nd (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9(Suppl 3):S5

    Article  PubMed  CAS  Google Scholar 

  173. Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd (2001) Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 187(1–2):91–97

    Article  PubMed  CAS  Google Scholar 

  174. Liu XF, Fawcett JR, Thorne RG, Frey WH 2nd (2001) Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett 308(2):91–94

    Article  PubMed  CAS  Google Scholar 

  175. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci 5(6):514–516

    Article  PubMed  CAS  Google Scholar 

  176. Parada C, Gato A, Aparicio M, Bueno D (2006) Proteome analysis of chick embryonic cerebrospinal fluid. Proteomics 6(1):312–320

    Article  PubMed  CAS  Google Scholar 

  177. Hussein MH, Daoud GA, Kakita H, Kato S, Goto T, Kamei M, Goto K, Nobata M, Ozaki Y, Ito T, Fukuda S, Kato I, Suzuki S, Sobajima H, Hara F, Hashimoto T, Togari H (2010) High cerebrospinal fluid antioxidants and interleukin 8 are protective of hypoxic brain damage in newborns. Free Radic Res 44(4):422–429

    Article  PubMed  CAS  Google Scholar 

  178. Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) CNS grafts of rat choroid plexus protect against cerebral ischemia in adult rats. NeuroReport 15(10):1543–1547

    Article  PubMed  CAS  Google Scholar 

  179. Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35(9):2206–2210

    Article  PubMed  Google Scholar 

  180. Regev L, Ezrielev E, Gershon E, Gil S, Chen A (2010) Genetic approach for intracerebroventricular delivery. Proc Natl Acad Sci U S A 107(9):4424–4429

    Article  PubMed  CAS  Google Scholar 

  181. Ohta M, Suzuki Y, Noda T, Kataoka K, Chou H, Ishikawa N, Kitada M, Matsumoto N, Dezawa M, Suzuki S, Ide C (2004) Implantation of neural stem cells via cerebrospinal fluid into the injured root. NeuroReport 15(8):1249–1253

    Article  PubMed  Google Scholar 

  182. Wu S, Suzuki Y, Kitada M, Kataoka K, Kitaura M, Chou H, Nishimura Y, Ide C (2002) New method for transplantation of neurosphere cells into injured spinal cord through cerebrospinal fluid in rat. Neurosci Lett 318(2):81–84

    Article  PubMed  CAS  Google Scholar 

  183. Wu S, Suzuki Y, Kitada M, Kitaura M, Kataoka K, Takahashi J, Ide C, Nishimura Y (2001) Migration, integration, and differentiation of hippocampus-derived neurosphere cells after transplantation into injured rat spinal cord. Neurosci Lett 312(3):173–176

    Article  PubMed  CAS  Google Scholar 

  184. Park D, Joo SS, Kim TK, Lee SH, Kang H, Lee HJ, Lim I, Matsuo A, Tooyama I, Kim YB, Kim SU (2011) Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals. Cell Transplant (in press)

Download references

Acknowledgments

We thank V. Ho and A. Malesz for critical reading of this manuscript. We are grateful for support from the Eleanor and Miles Shore Fellowship Program for Scholars in Medicine/Children’s Hospital Boston Career Development Award, and the NIH (Award number R00 NS072192). M.K.L. is an Alfred P. Sloan Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria K. Lehtinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zappaterra, M.W., Lehtinen, M.K. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell. Mol. Life Sci. 69, 2863–2878 (2012). https://doi.org/10.1007/s00018-012-0957-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0957-x

Keywords

Navigation