Skip to main content
Log in

Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65(7–8):1019–1048

    Article  PubMed  CAS  Google Scholar 

  2. Garattini E, Fratelli M, Terao M (2009) The mammalian aldehyde oxidase gene family. Hum Genomics 4(2):119–130

    PubMed  CAS  Google Scholar 

  3. Garattini E et al (2003) Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 372(Pt 1):15–32

    Article  PubMed  CAS  Google Scholar 

  4. Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 43(3):374–386

    Article  PubMed  CAS  Google Scholar 

  5. Coelho C et al (2012) The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 287(48):40690–40702

    Article  PubMed  CAS  Google Scholar 

  6. Enroth C et al (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA 97(20):10723–10728

    Article  PubMed  CAS  Google Scholar 

  7. Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8(4):487–503

    Article  PubMed  CAS  Google Scholar 

  8. Sekimoto H et al (1997) Cloning and molecular characterization of plant aldehyde oxidase. J Biol Chem 272(24):15280–15285

    Article  PubMed  CAS  Google Scholar 

  9. Seo M et al (2004) Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45(11):1694–1703

    Article  PubMed  CAS  Google Scholar 

  10. Seo M et al (2000) The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA 97(23):12908–12913

    Article  PubMed  CAS  Google Scholar 

  11. Yang L et al (2009) Cloning and expression analysis of an aldehyde oxidase gene in Arachis hygogaea L. J Environ Biol 30(1):93–98

    PubMed  CAS  Google Scholar 

  12. Taylor NJ, Cowan AK (2004) Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in ‘Hass’ avocado. J Plant Res 117(2):121–130

    Article  PubMed  CAS  Google Scholar 

  13. Yesbergenova Z et al (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42(6):862–876

    Article  PubMed  CAS  Google Scholar 

  14. Hartmann T et al (2012) The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 40(5):856–864

    Article  PubMed  CAS  Google Scholar 

  15. Pryde DC et al (2010) Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53(24):8441–8460

    Article  PubMed  CAS  Google Scholar 

  16. Cazzaniga G et al (1994) Chromosomal mapping, isolation, and characterization of the mouse xanthine dehydrogenase gene. Genomics 23(2):390–402

    Article  PubMed  CAS  Google Scholar 

  17. Kurosaki M et al (1999) Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochem J 341(Pt 1):71–80

    Article  PubMed  CAS  Google Scholar 

  18. Kurosaki M et al (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498

    Article  PubMed  CAS  Google Scholar 

  19. Terao M et al (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276(49):46347–46363

    Article  PubMed  CAS  Google Scholar 

  20. Terao M et al (2000) Cloning of the cDNAs coding for two novel molybdo-flavoproteins showing high similarity with aldehyde oxidase and xanthine oxidoreductase. J Biol Chem 275(39):30690–30700

    Article  PubMed  CAS  Google Scholar 

  21. Obach RS et al (2004) Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol 44(1):7–19

    Article  PubMed  CAS  Google Scholar 

  22. Terao M et al (2009) Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 29(2):357–377

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez-Trelles F, Tarrio R, Ayala FJ (2003) Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci USA 100(23):13413–13417

    Article  PubMed  CAS  Google Scholar 

  24. Terao M et al (2006) Avian and canine aldehyde oxidases. Novel insights into the biology and evolution of molybdo-flavoenzymes. J Biol Chem 281(28):19748–19761

    Article  PubMed  CAS  Google Scholar 

  25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  26. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695

    Article  PubMed  CAS  Google Scholar 

  27. St John JA et al (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 13(1):415

  28. Tyagi S et al (2008) CID-miRNA: a web server for prediction of novel miRNA precursors in human genome. Biochem Biophys Res Commun 372(4):831–834

    Article  PubMed  CAS  Google Scholar 

  29. Gess RW, Coates MI, Rubidge BS (2006) A lamprey from the Devonian period of South Africa. Nature 443(7114):981–984

    Article  PubMed  CAS  Google Scholar 

  30. San Mauro D (2010) A multilocus timescale for the origin of extant amphibians. Mol Phylogenet Evol 56(2):554–561

    Google Scholar 

  31. Bininda-Emonds OR et al (2007) The delayed rise of present-day mammals. Nature 446(7135):507–512

    Article  PubMed  CAS  Google Scholar 

  32. Price SA et al (2012) Tempo of trophic evolution and its impact on mammalian diversification. Proc Natl Acad Sci USA 109(18):7008–7012

    Article  PubMed  CAS  Google Scholar 

  33. Davies TJ et al (2008) Colloquium paper: phylogenetic trees and the future of mammalian biodiversity. Proc Natl Acad Sci USA 105(Suppl 1):11556–11563

    Article  PubMed  CAS  Google Scholar 

  34. Fritz SA, Bininda-Emonds OR, Purvis A (2009) Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol Lett 12(6):538–549

    Article  PubMed  Google Scholar 

  35. Barrow EC, Seiffert ER, Simons EL (2010) A primitive hyracoid (Mammalia, Paenungulata) from the early Priabonian (Late Eocene) of Egypt. J Syst Palaeontol 8(2):213–244

    Google Scholar 

  36. Pumo DE et al (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47(6):709–717

    Article  PubMed  CAS  Google Scholar 

  37. Gingerich PD et al (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293(5538):2239–2242

    Article  PubMed  CAS  Google Scholar 

  38. Nyakatura K, Bininda-Emonds OR (2012) Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol 10:12

    Article  PubMed  Google Scholar 

  39. Springer MS et al (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 100(3):1056–1061

    Article  PubMed  CAS  Google Scholar 

  40. Eizirik E et al (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56(1):49–63

    Article  PubMed  CAS  Google Scholar 

  41. Groves C (1998) Primate evolution—in and out of Africa. Curr Biol 8(21):R747 (author reply 747–748)

  42. Schrago CG, Russo CA (2003) Timing the origin of New World monkeys. Mol Biol Evol 20(10):1620–1625

    Article  PubMed  CAS  Google Scholar 

  43. Wildman DE et al (2009) A fully resolved genus level phylogeny of neotropical primates (Platyrrhini). Mol Phylogenet Evol 53(3):694–702

    Article  PubMed  CAS  Google Scholar 

  44. Chono H et al (2011) In vivo safety and persistence of endoribonuclease gene-transduced CD4+ T cells in cynomolgus macaques for HIV-1 gene therapy model. PLoS One 6(8):e23585

    Article  PubMed  CAS  Google Scholar 

  45. Van Rompay KK (2012) The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 28(1):16–35

    Article  PubMed  Google Scholar 

  46. Smalheiser NR (2003) EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol 4(7):403

    Article  PubMed  Google Scholar 

  47. Devor EJ (2006) Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered 97(2):186–190

    Article  PubMed  CAS  Google Scholar 

  48. Guo X et al (2009) Small RNAs originated from pseudogenes: cis- or trans-acting? PLoS Comput Biol 5(7):e1000449

    Article  PubMed  Google Scholar 

  49. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  PubMed  CAS  Google Scholar 

  50. Eger BT et al (2000) Purification, crystallization and preliminary X-ray diffraction studies of xanthine dehydrogenase and xanthine oxidase isolated from bovine milk. Acta Crystallogr D Biol Crystallogr 56(Pt 12):1656–1658

    Article  PubMed  CAS  Google Scholar 

  51. Kuwabara Y et al (2003) Unique amino acids cluster for switching from the dehydrogenase to oxidase form of xanthine oxidoreductase. Proc Natl Acad Sci USA 100(14):8170–8175

    Article  PubMed  CAS  Google Scholar 

  52. Nishino T, Okamoto K (2000) The role of the [2Fe–2s] cluster centers in xanthine oxidoreductase. J Inorg Biochem 82(1–4):43–49

    Article  PubMed  CAS  Google Scholar 

  53. Rehorek SJ, Firth BT, Hutchinson MN (2000) The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ. J Biosci 25(2):181–190

    PubMed  CAS  Google Scholar 

  54. Rehorek SJ, Firth BT, Hutchinson MN (2000) The structure of the nasal chemosensory system in squamate reptiles. 1. The olfactory organ, with special reference to olfaction in geckos. J Biosci 25(2):173–179

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grants from the Telethon-Italy Foundation, the Fondazione Cariplo, the Fondazione Italo Monzino, and the Negri-Weizmann Foundation were fundamental for the completion of this work. The work was also partially supported with grants from the Associazione Italiana per la Ricerca contro il Cancro (AIRC). We would like to thank the talented student, Valentina Novelli for sequence analysis. We acknowledge the help of Felice Deceglie with the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Garattini.

Additional information

M. Kurosaki and M. Bolis contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosaki, M., Bolis, M., Fratelli, M. et al. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell. Mol. Life Sci. 70, 1807–1830 (2013). https://doi.org/10.1007/s00018-012-1229-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1229-5

Keywords

Navigation