Skip to main content
Log in

Die GABAA-Rezeptor-Familie

Möglichkeiten für die Entwicklung besserer Anästhetika

The GABAA receptor family

Possibilities for the development of better anesthetics

  • Allgemeinanästhesie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Klinisch gebräuchliche Anästhetika besitzen amnestische, sedierende, hypnotische und immobilisierende Eigenschaften. Auf molekularer Ebene modulieren diese Substanzen eine Reihe von Rezeptoren in der Membran von Nervenzellen. Durch Untersuchungen an genetisch veränderten Tieren lässt sich nun erstmals eine Verbindung zwischen den Wirkungen an bestimmten Rezeptoren sowie den daraus resultierenden klinischen Wirkungen und Nebenwirkungen herstellen. So vermittelt ein Subtyp des GABAA-Rezeptors Bewusstseinsverlust und Immobilität; ein anderer Subtyp ist an Sedierung und Hypothermie beteiligt. Diese Erkenntnisse bilden eine Grundlage für die Entwicklung hochspezifischer, nebenwirkungsarmer Medikamente von morgen.

Abtract

Clinically used anesthetics show amnestic, sedative, hypnotic and immobilizing properties. On a molecular level these drugs affect several receptors in the cell membrane of neurons. By using genetically engineered mice a linkage can now be made between actions on certain receptors and clinically desired and undesired effects. Experiments show that a certain GABAA receptor subtype mediates hypnosis and immobility, whereas another subtype is involved in side-effects like sedation and hypothermia. These findings form the basis for the development of new drugs, acting highly specific and with fewer side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Antkowiak B (1999) Different actions of general anaesthetics on the firing patterns of neocortical neurons mediated by the GABAA receptor. Anesthesiology 91:500–511

    Article  PubMed  Google Scholar 

  2. Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ (1997) The interaction of the general anesthetic etomidate with the γ-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci USA 94:11031–11036

    Article  PubMed  Google Scholar 

  3. Belelli D, Pistis M, Peters JA, Lambert JJ (1999) General anaesthetic action at transmitter-gated inhibitory amino acid receptors. Trends Pharmacol Sci 20:496–502

    Article  PubMed  Google Scholar 

  4. Blednov YA, Jung S, Alva H, Wallace D, Rosahl T, Whiting PJ, Harris RA (2003) Deletion of the alpha1 or beta2 subunit of GABAA receptors reduces actions of alcohol and other drugs. J Pharmacol Exp Ther 304:30–36

    Article  PubMed  Google Scholar 

  5. Bohlhalter S, Weinmann O, Mohler H, Fritschy JM (1996) Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci 16:283–297

    PubMed  Google Scholar 

  6. Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M (2001) Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 409:88–92

    Article  PubMed  Google Scholar 

  7. Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  PubMed  Google Scholar 

  8. Cirone J, Rosahl WT, Reynolds DS et al. (2004) Gamma-aminobutyric acid type A receptor beta 2 subunit mediates the hypothermic effect of etomidate in mice. Anesthesiology 100:1438–1445

    Article  PubMed  Google Scholar 

  9. Downing SS, Lee YT, Farb DH, Gibbs TT (2005) Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABA(A) receptors supports an allosteric model of modulation. Br J Pharmacol 145:894–906

    Article  PubMed  Google Scholar 

  10. Ernst M, Brauchart D, Boresch S, Sieghart W (2003) Comparative modeling of GABA(A) receptors: limits, insights, future developments. Neuroscience 119:933–943

    Article  PubMed  Google Scholar 

  11. Grasshoff C, Rudolph U, Antkowiak B (2005) Molecular and systemic mechanisms of general anaesthesia: the ‚multi-site and multiple mechanisms‘ concept. Curr Opin Anaesthesiol 18:386–391

    Article  Google Scholar 

  12. Harris BD, Wong G, Moody EJ, Skolnick P (1995) Different subunit requirements for volatile and nonvolatile anesthetics at gamma-aminobutyric acid type A receptors. Mol Pharmacol 47:363–367

    PubMed  Google Scholar 

  13. Hentschke H, Schwarz C, Antkowiak B (2005) Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABA receptor-mediated inhibition. Eur J Neurosci 21:93–102

    Article  PubMed  Google Scholar 

  14. Homanics GE, Lorey TM de, Firestone LL et al. (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94:4143–4148

    Article  PubMed  Google Scholar 

  15. Jurd R, Arras M, Lambert S et al. (2003) General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta 3 subunit. FASEB J 17:250–252

    PubMed  Google Scholar 

  16. Krasowski MD, Koltchine VV, Rick CE, Ye Q, Finn SE, Harrison NL (1998) Propofol and other intravenous anesthetics have sites of action on the gamma-aminobutyric acid type A receptor distinct from that of isoflurane. Mol Pharmacol 53:530–538

    PubMed  Google Scholar 

  17. Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med 334:1209–1215

    Article  PubMed  Google Scholar 

  18. Lambert S, Arras M, Vogt KE, Rudolph U (2005) Isoflurane-induced surgical tolerance mediated only in part by beta3-containing GABA(A) receptors. Eur J Pharmacol 516:23–27

    Article  PubMed  Google Scholar 

  19. Li X, Pearce RA (2000) Effects of halothane on GABAA receptor kinetics: evidence for slowed agonist unbinding. J Neurosci 20:899–907

    PubMed  Google Scholar 

  20. Macdonald R, Barker JL (1978) Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurones. Nature 271:563–564

    Article  PubMed  Google Scholar 

  21. Mihic SJ, Ye Q, Wick MJ et al. (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389

    Article  PubMed  Google Scholar 

  22. Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    PubMed  Google Scholar 

  23. Möhler H, Fritschy JM, Rudolph U (2002) A new benzodiazepine pharmacology. J Pharmacol Exp Ther 300:2–8

    Article  PubMed  Google Scholar 

  24. Otis TS, Mody I (1992) Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons. Neuroscience 49:13–32

    Article  PubMed  Google Scholar 

  25. Paris A, Philipp M, Tonner PH, Steinfath M, Lohse M, Scholz J, Hein L (2003) Activation of alpha 2B-adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiology 99:889–895

    Article  PubMed  Google Scholar 

  26. Quinlan JJ, Homanics GE, Firestone LL (1998) Anesthesia sensitivity in mice that lack the β3 subunit of the γ-aminobuyric acid type A receptor. Anesthesiology 88:775–780

    Article  PubMed  Google Scholar 

  27. Reynolds DS, Rosahl TW, Cirone J et al. (2003) Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 23:8608–8617

    PubMed  Google Scholar 

  28. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  PubMed  Google Scholar 

  29. Rudolph U, Mohler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    Article  PubMed  Google Scholar 

  30. Schmied H, Kurz A, Sessler DI, Kozek S, Reiter A (1996) Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 347:289–292

    Article  PubMed  Google Scholar 

  31. Siegwart R, Jurd R, Rudolph U (2002) Molecular determinants for the action of general anesthetics at recombinant α2β3γ2 receptors. J Neurochem 80:140–148

    Article  PubMed  Google Scholar 

  32. Sur C, Wafford KA, Reynolds DS et al. (2001) Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J Neurosci 21:3409–3418

    PubMed  Google Scholar 

  33. Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D (1984) Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 310:1415–1421

    PubMed  Google Scholar 

  34. Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

    Article  PubMed  Google Scholar 

  35. Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379–8382

    PubMed  Google Scholar 

  36. Whiting PJ (2003) GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8:445–450

    PubMed  Google Scholar 

  37. Wisden W, Gundlach AL, Barnard EA, Seeburg PH, Hunt SP (1991) Distribution of GABAA receptor subunit mRNAs in rat lumbar spinal cord. Brain Res Mol Brain Res 10:179–183

    Article  PubMed  Google Scholar 

  38. Wong SM, Cheng G, Homanics GE, Kendig JJ (2001) Enflurane actions on spinal cords from mice that lack the β3 subnit of the GABAA receptor. Anesthesiology 95:154–164

    PubMed  Google Scholar 

  39. Zeller A, Arras M, Lazaris A, Jurd R, Rudolph U (2005) Distinct molecular targets for the central respiratory and cardiac actions of the general anesthetics etomidate and propofol. FASEB J 19:1677–1679

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Drexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, B., Grasshoff, C., Rudolph, U. et al. Die GABAA-Rezeptor-Familie. Anaesthesist 55, 287–295 (2006). https://doi.org/10.1007/s00101-005-0950-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0950-y

Schlüsselwörter

Keywords

Navigation