Skip to main content
Log in

Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

On-line electrochemistry/liquid chromatography/mass spectrometry was used to simulate the detoxification mechanism of paracetamol in the body. In an electrochemical flow-through cell, paracetamol was oxidized at a porous glassy carbon working electrode at a potential of 600 mV vs. Pd/H2 with formation of a quinoneimine intermediate. The quinoneimine further reacted with glutathione and/or N-acetylcysteine to form isomeric adducts via the thiol function. The adducts were characterized on-line by liquid chromatography/mass spectrometry. These reactions are similar to those occurring between paracetamol and glutathione under catalysis by cytochrome P450 enzymes in the body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Prescott LF (1996) Paracetamol (Acetaminophen): a critical bibliographic review. Taylor and Francis, London

    Google Scholar 

  2. Davidson DG, Eastham WN (1966) Br Med J 5512:497

    Article  Google Scholar 

  3. Mitchell JR (1988) N Engl J Med 319:1601

    Article  CAS  Google Scholar 

  4. Dahlin DC, Miwa GT, Lu AYH, Nelson SD (1984) Proc Nat Acad Sci USA 81:1327

    Article  CAS  Google Scholar 

  5. Raucy JL, Lasker JM, Lieber CS, Black M (1989) Arch Biochem Biophys 271:270

    Article  CAS  Google Scholar 

  6. Thummel KE, Lee CA, Kunze KL, Nelson SD, Slattery JT (1993) Biochem Pharmacol 45:1563

    Article  CAS  Google Scholar 

  7. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR, Brodie BB (1973) J Pharmacol Exp Ther 187:211

    CAS  Google Scholar 

  8. Prescott LF, Park J, Ballantyne A (1977) Lancet 2:432

    Article  CAS  Google Scholar 

  9. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) J Pharmacol Exp Ther 187:195

    CAS  Google Scholar 

  10. Potter DW, Hinson JA (1986) Mol Pharmacol 30:33

    CAS  Google Scholar 

  11. Moore M, Thor H, Moore G, Nelson S, Moldéus P, Orrenius S (1985) J Biol Chem 260:13035

    CAS  Google Scholar 

  12. Kyle ME, Sakaida I, Serroni A, Farber JL (1990) Biochem Pharmacol 40:1211

    Article  CAS  Google Scholar 

  13. Thomas SHL (1993) Pharmac Ther 60:91

    Article  CAS  Google Scholar 

  14. Black M (1984) Ann Rev Med 35:577

    Article  CAS  Google Scholar 

  15. James LP, Mayeux PR, Hinson JA (2003) Drug Metab Dispos 31:1499

    Article  CAS  Google Scholar 

  16. Sumioka I, Matsura T, Yamada K (2004) Yonago Acta Med 47:14

    Google Scholar 

  17. Marzullo L (2005) Curr Opin Pediatr 17:239

    Article  Google Scholar 

  18. Nash RA, Skuden DM, Purdy WC (1958) J Am Pharm Assoc 47:433

    CAS  Google Scholar 

  19. Garcia R, Váquez MD, Barrado E, Tascón ML, Velasco E, Sánchez-Batanero P (1989) Bull Soc Chim 1:19

    Google Scholar 

  20. Hall LR, Iwamoto RT, Hanzlik RP (1989) J Org Chem 54:2446

    Article  CAS  Google Scholar 

  21. Hall LR, Hanzlik RP (1990) J Biol Chem 265:12349

    CAS  Google Scholar 

  22. Getek TA, Korfmacher WA, McRae TA, Hinson JA (1989) J Chromatogr 474:245

    Article  CAS  Google Scholar 

  23. Zhang F, Dryhurst G (1995) J Electroanal Chem 398:117

    Article  CAS  Google Scholar 

  24. Xu R, Huang X, Kramer KJ, Hawley MD (1996) Bioorg Chem 24:110

    Article  CAS  Google Scholar 

  25. Deng H, Van Berkel GJ (1999) Electroanalysis 11:857

    Article  CAS  Google Scholar 

  26. Gamache P, Smith R, McCarthy R, Waraska J, Acworth I (2003) Spectroscopy 18:14

    CAS  Google Scholar 

  27. Jurva U, Wikström HV, Bruins AP (2000) Rapid Commun Mass Spectrom 14:529

    Article  CAS  Google Scholar 

  28. Jurva U, Wikström HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17:800

    Article  CAS  Google Scholar 

  29. Volk KJ, Yost RA, Brajter-Toth A (1992) Anal Chem 64:21A

    CAS  Google Scholar 

  30. Hayen H, Karst U (2003) J Chromatogr A 1000:549

    Article  CAS  Google Scholar 

  31. Karst U (2004) Angew Chem Int Ed 43:2476

    Article  CAS  Google Scholar 

  32. Hayen H, Karst U (2003) Anal Chem 75:4833

    Article  CAS  Google Scholar 

  33. Van Leeuwen SM, Blankert B, Kauffmann JM, Karst U (2005) Anal Bioanal Chem 382:742

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG, Bonn, Germany) and the Fonds der Chemischen Industrie (Frankfurt, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Additional information

Awarded a Poster Prize on the occasion of the Conference of the German Mass Spectrometric Society (DGMS) in Mainz, March 5–8, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, W., Karst, U. Simulation of the detoxification of paracetamol using on-line electrochemistry/liquid chromatography/mass spectrometry. Anal Bioanal Chem 386, 1701–1708 (2006). https://doi.org/10.1007/s00216-006-0801-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0801-y

Keywords

Navigation