Skip to main content
Log in

Biomimetic modeling of oxidative drug metabolism

Strategies, advantages and limitations

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The prediction of drug metabolism is an important task in drug development. Besides well-established in vitro and in vivo methods using biological matrices, several biomimetic models have been developed. This review summarizes three different nonenzymatic strategies, including metalloporphyrins as surrogates of the active centre of cytochrome P450, Fenton’s reagent, and the electrochemical oxidation of drug compounds. Although none of the systems can simulate the whole range of cytochrome P450-catalyzed reactions adequately, the biomimetic models show some advantages over standard in vitro methods. For example, metalloporpyhrin catalysts allow the synthesis of certain metabolites in sufficient amounts and with sufficient purities to permit characterization and further pharmacological and toxicological tests. The electrochemical generation of metabolites coupled on-line to liquid chromatography/mass spectrometry is a promising tool for studying reactive metabolites and can be applied in automated high-throughput screening approaches. In this paper, detailed comparisons with cytochrome P450 catalysis are drawn, advantages and disadvantages of the respective methods are revealed, and possible applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11a–b
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Meunier B, Bernadou J (2000) Struct Bonding 97:1–35

    Google Scholar 

  2. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    CAS  Google Scholar 

  3. Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM (2003) Toxicol Appl Pharmacol 189:233–246

    CAS  Google Scholar 

  4. Pelkonen O, Turpeinen M, Uusitalo J, Rautio A, Raunio H (2005) Basic Clin Pharmacol Toxicol 96:167–175

    CAS  Google Scholar 

  5. Plant N (2004) Drug Discovery Today 9:328–336

    CAS  Google Scholar 

  6. Groves JT, Nemo TE, Myers RS (1979) J Am Chem Soc 101:1032–1033

    CAS  Google Scholar 

  7. Traylor PS, Dolphin D, Traylor TG (1984) J Chem Soc Chem Commun 279–280

  8. Bernadou J, Meunier B (2004) Adv Synth Catal 346:171–184

    CAS  Google Scholar 

  9. Feiters MC, Rowan AE, Nolte RJM (2000) Chem Soc Rev 29:375–384

    CAS  Google Scholar 

  10. Meunier B (1992) Chem Rev 92:1411–1456

    CAS  Google Scholar 

  11. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    CAS  Google Scholar 

  12. Vicente MGH, Smith KM (2000) Curr Org Chem 4:139–174

    Google Scholar 

  13. Nagatsu Y, Higuchi T, Hirobe M (1990) Chem Pharm Bull 38:400–403

    CAS  Google Scholar 

  14. Chauhan SMS, Kandadai SA, Sahoo B (2001) Chem Pharm Bull 49:1375–1376

    CAS  Google Scholar 

  15. Melo AJB, Iamamoto Y, Maestrin APJ, Lindsay-Smith JR, Santos MD, Lopes NP, Bonato PS (2005) J Mol Catal A 226:23–31

    CAS  Google Scholar 

  16. Meier H, Blaschke G (2001) J Pharm Biomed Anal 26:409–415

    CAS  Google Scholar 

  17. Chorghade MS, Dezaro DA, Hill DR, Lee EC, Pariza RJ, Andersen JV, Hansen KT, Dolphin DH (1994) Bioorg Med Chem Lett 4:2867–2870

    CAS  Google Scholar 

  18. Chorghade MS, Hill DR, Lee EC, Pariza RJ, Dolphin DH, Hino F, Zhang LY (1996) Pure Appl Chem 68:753–756

    CAS  Google Scholar 

  19. Ferrero JL, Thomas SB, Marsh KC, Rodrigues D, Uchic JT, Buko AM (2002) Drug Metab Dispos 30:1094–1101

    CAS  Google Scholar 

  20. Mansuy D, Battioni P, Battioni JP (1989) Eur J Biochem 184:267–285

    CAS  Google Scholar 

  21. Mansuy D (1990) Pure Appl Chem 62:741–746

    CAS  Google Scholar 

  22. Dansette PM, Amar C, Valadon P, Pons C, Beaune PH, Mansuy D (1991) Biochem Pharmacol 41:553–560

    CAS  Google Scholar 

  23. Mori Y, Kuroda N, Sakai Y, Yokoya F, Toyoshi K, Baba S (1985) Drug Metab Dispos 13:239–245

    CAS  Google Scholar 

  24. Othman S, Mansuy-Mouries V, Bensoussan C, Battioni P, Mansuy D (2000) C R Acad Sci Paris Sér IIc 3:751–755

    Google Scholar 

  25. Poon GK, Chen Q, Teffera Y, Ngui JS, Griffin PR, Braun MP, Doss GA, Freeden C, Stearns RA, Evans DC, Baillie TA, Tang W (2001) Drug Metab Dispos 29:1608–1613

    CAS  Google Scholar 

  26. Spasojević I, Colvin OM, Warshany KR, Batinić-Haberle I (2006) J Inorg Biochem 100:1897–1902

    Google Scholar 

  27. Brock N (1996) Cancer 78:542–547

    CAS  Google Scholar 

  28. Oda Y, Imaoka S, Nakahira Y, Asada A, Fujimori M, Fujita S, Funae Y (1989) Biochem Pharmacol 38:4439–4444

    CAS  Google Scholar 

  29. Carrier MN, Battioni P, Mansuy D (1993) Bull Soc Chim Fr 130:405–416

    CAS  Google Scholar 

  30. Chorghade MS, Hill DR, Lee EC, Pariza RJ (1996) Pure Appl Chem 68:753–756

    CAS  Google Scholar 

  31. Angundez JAG, Martinez C, Benitez J (1995) Xenobiotica 25:417–427

    Google Scholar 

  32. Hill DR, Celebuski JE, Pariza RJ, Chorghade MS, Levenberg M, Pagano T, Cleary G, West P, Whittern D (1996) Tetrahedron Lett 37:787–790

    CAS  Google Scholar 

  33. Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D (1997) Drug Metab Dispos 25:623–630

    CAS  Google Scholar 

  34. Maurin AJM, Ianamoto Y, Lopes NP, Lindsay-Smith JR, Bonato PS (2003) J Braz Chem Soc 14:322–328

    CAS  Google Scholar 

  35. Smolinka K, Göber B (1999) Eur J Org Chem 679–683

  36. Andersen JV, Hansen KT (1997) Xenobiotica 27:901–912

    CAS  Google Scholar 

  37. Sotelo J, Jung H (1998) Clin Pharmacokinet 34:503–515

    CAS  Google Scholar 

  38. Bernadou J, Fabiano AS, Robert A, Meunier B (1994) J Am Chem Soc 116:9375–9376

    CAS  Google Scholar 

  39. Yang SJ, Nam W (1998) Inorg Chem 37:606–607

    CAS  Google Scholar 

  40. Lertratanangkoon K, Horning MG (1982) Drug Metab Dispos 10:1–10

    CAS  Google Scholar 

  41. Bernadou J, Bonnafous M, Labat G, Loiseau P, Meunier B (1991) Drug Metab Dispos 19:360–364

    CAS  Google Scholar 

  42. Vidal M, Bonnafous M, Defrance S, Loiseau P, Bernadou J, Meunier B (1993) Drug Metab Dispos 21:811–817

    CAS  Google Scholar 

  43. Masumoto H, Takeuchi K, Ohta S, Hirobe M (1989) Chem Pharm Bull 37:1788–1794

    CAS  Google Scholar 

  44. Balahura RJ, Sorokin A, Bernadou J, Meunier B (1997) Inorg Chem 36:3488–3492

    CAS  Google Scholar 

  45. Alkatheeri NA, Wasfi IA, Lambert M (1999) J Vet Pharmacol Therap 22:127–135

    CAS  Google Scholar 

  46. Miyachi H, Nagatsu Y (2002) Chem Pharm Bull 50:1137–1140

    CAS  Google Scholar 

  47. Ohmori S, Miura M, Toriumi C, Satoh Y, Ooie T (2007) Drug Metab Dispos 35:1624–1633

    CAS  Google Scholar 

  48. Collman JP, Brauman JI, Meunier B, Hayashi T, Kodadek T, Raybuck SA (1985) J Am Chem Soc 107:2000–2005

    CAS  Google Scholar 

  49. Mansuy D, Battioni P, Renaud JP (1984) J Chem Soc Chem Commun 1255–1257

  50. Chauhan SMS, Sahoo BB (1999) Bioorg Med Chem 7:2629–2634

    CAS  Google Scholar 

  51. Hamman MA, Thompson GA, Hall SD (1997) Biochem Pharmacol 54:33–41

    CAS  Google Scholar 

  52. Doi T, Mori T, Mashino T, Hirobe M (1993) Biochem Biophys Res Commun 191:737–743

    CAS  Google Scholar 

  53. Goldstein S, Meyerstein D, Czapski G (1993) Free Radic Biol Med 15:135–445

    Google Scholar 

  54. Fenton HJH (1894) J Chem Soc 65:899–910

    CAS  Google Scholar 

  55. Van der Steen J, Timmer EC, Westra JG, Benckhuysen C (1973) J Am Chem Soc 95:7525–7536

    Google Scholar 

  56. Zbaida S, Kariv R, Fischer P, Silman-Greespan J, Tashima Z (1986) Eur J Biochem 154:603–605

    CAS  Google Scholar 

  57. Zbaida S, Kariv R, Fischer P, Gilhar D (1987) Xenobiotica 17:617–621

    CAS  Google Scholar 

  58. Oturan MA, Pinson J, Oturan N, Deprez D (1999) New J Chem 23:793–794

    CAS  Google Scholar 

  59. Jurva U, Wikström HV, Bruins AP (2002) Rapid Commun Mass Spectrom 16:1934–1940

    CAS  Google Scholar 

  60. Johansson T, Weidolf L, Jurva U (2007) Rapid Commun Mass Spectrom 21:2323–2331

    CAS  Google Scholar 

  61. Shono T, Toda T, Oshino N (1981) Drug Metab Dispos 9:481–482

    CAS  Google Scholar 

  62. Shono T, Toda T, Oshino N (1982) J Am Chem Soc 104:2639–2641

    CAS  Google Scholar 

  63. Macdonald TL, Gutheim WG, Martin RB, Guengerich FP (1989) Biochemistry 28:2071–2077

    CAS  Google Scholar 

  64. Hall LR, Iwamoto RT, Hanzlik RP (1989) J Org Chem 54:2446–2451

    CAS  Google Scholar 

  65. Hall LR, Hanzlik RP (1990) J Biol Chem 265:12349–12355

    CAS  Google Scholar 

  66. Zhang F, Dryhurst G (1995) J Electroanal Chem 398:117–128

    Google Scholar 

  67. Xu R, Huang X, Kramer KJ, Hawley MD (1996) Bioorg Chem 24:110–126

    CAS  Google Scholar 

  68. Paci A, Martens T, Royer J (2001) Bioorg Med Chem Lett 11:1347–1349

    CAS  Google Scholar 

  69. Galvão de Lima R, Sueli Bonato P, Santana da Silva R (2003) J Pharm Biomed Anal 32:337–343

    Google Scholar 

  70. Hambitzer G, Heitbaum J (1986) Anal Chem 58:1067–1070

    CAS  Google Scholar 

  71. Volk KJ, Lee MS, Yost RA, Brajter-Toth A (1986) Anal Chem 60:720–722

    Google Scholar 

  72. Volk KJ, Yost RA, Brajter-Toth A (1989) J Chromatogr A 474:231–243

    CAS  Google Scholar 

  73. Volk KJ, Yost A, Brajter-Toth A (1989) Anal Chem 61:1709–1717

    CAS  Google Scholar 

  74. Volk KJ, Yost RA, Brajter-Toth A (1990) J Electrochem Soc 137:1764–1771

    CAS  Google Scholar 

  75. Regino MCS, Brajter-Toth A (1997) Anal Chem 69:5067–5072

    CAS  Google Scholar 

  76. Zhou F, Van Berkel GJ (1995) Anal Chem 67:3643–3649

    CAS  Google Scholar 

  77. Xu X, Lu W, Cole RB (1996) Anal Chem 68:4244–4253

    CAS  Google Scholar 

  78. Cole RB, Xu X (1999) US Patent 5 879 949

  79. Lu W, Xu X, Cole RB (1997) Anal Chem 69:2478–2484

    CAS  Google Scholar 

  80. Arakawa R, Abura T, Fukuo T, Horiguchi H, Matsubayashi G (1999) Bull Chem Soc Jpn 72:1519–1523

    CAS  Google Scholar 

  81. Deng H, Van Berkel GJ (1999) Anal Chem 71:4284–4293

    CAS  Google Scholar 

  82. Kertesz V, Van Berkel GJ (2001) Electroanal 13:1425–1430

    CAS  Google Scholar 

  83. Kertesz V, Deng H, Asano KG, Hettich RL, Van Berkel GJ (2002) Electroanalysis 14:1027–1030

    Google Scholar 

  84. Hayen H, Karst U (2003) Anal Chem 75:4833–4840

    CAS  Google Scholar 

  85. Seiwert B, Henneken H, Karst U (2004) J Am Chem Soc Mass Spectrom 15:1727–1736

    CAS  Google Scholar 

  86. Seiwert B, Karst U (2007) Anal Bioanal Chem 388:1633–1642

    CAS  Google Scholar 

  87. Permentier HP, Jurva U, Barroso B, Bruins AP (2003) Rapid Commun Mass Spectrom 17:1585–1592

    Google Scholar 

  88. Diehl G, Karst U (2002) Anal Bioanal Chem 373:390–398

    CAS  Google Scholar 

  89. Karst U (2004) Angew Chem Int Ed 43:2476–2478

    CAS  Google Scholar 

  90. Van Berkel GJ, McLuckey SA, Glish GL (1991) Anal Chem 63:1098–1109

    Google Scholar 

  91. Blades T, Ikonomou MG, Kebarle P (1991) Anal Chem 63:2109–2114

    CAS  Google Scholar 

  92. Van Berkel GJ, McLuckey SA, Glish GL (1992) Anal Chem 64:1586–1593

    Google Scholar 

  93. Van Berkel GJ, Zhou F (1995) Anal Chem 67:2916–2923

    Google Scholar 

  94. Van Berkel GJ, Zhou F (1995) Anal Chem 67:3658–3964

    Google Scholar 

  95. Van Berkel GJ (2000) J Am Soc Mass Spectrom 11:951–960

    Google Scholar 

  96. Kertesz V, Van Berkel GJ (2001) J Mass Spectrom 36:204–210

    CAS  Google Scholar 

  97. Van Berkel GJ, Kertesz V (2001) J Mass Spectrom 36:1125–1132

    Google Scholar 

  98. Van Berkel GJ, Asano KG, Kertesz V (2002) Anal Chem 74:5047–5056

    Google Scholar 

  99. Van Berkel GJ (2003) US Patent 6 784 439

  100. Van Berkel GJ (2004) US Patent 6 677 593

  101. Van Berkel GJ, Kertesz V, Ford MJ, Granger MC (2004) J Am Soc Mass Spectrom 15:1755–1766

    Google Scholar 

  102. Van Berkel GJ, Kertesz V (2005) Anal Chem 77:8041–8049

    Google Scholar 

  103. Kertesz V, Van Berkel GJ (2006) J Am Soc Mass Spectrom 17:953–961

    CAS  Google Scholar 

  104. Van Berkel GJ, Kertesz V (2007) Anal Chem 79:5510–5520

    Google Scholar 

  105. Svendsen CN (1993) Analyst 118:123–129

    CAS  Google Scholar 

  106. Özkan SA (2007) Chromatographia 66:S3–S13

    Google Scholar 

  107. Getek TA, Korfmacher WA, McRae TA, Hinson JA (1989) J Chromatogr A 474:245–256

    CAS  Google Scholar 

  108. Deng H, Van Berkel GJ (1999) Electroanalysis 11:857–865

    CAS  Google Scholar 

  109. Iwahashi H (1999) J Chromatogr B 736:237–245

    CAS  Google Scholar 

  110. Jurva U, Wikström HV, Bruins AP (2000) Rapid Commun Mass Spectrom 14:529–533

    CAS  Google Scholar 

  111. Jurva U, Wikström HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17:800–810

    Google Scholar 

  112. Gamache PH, Smith R, McCarthy R, Waraska J, Acworth IN (2003) Spectroscopy 18:14–41

    CAS  Google Scholar 

  113. Gamache PH, Meyer DF, Granger MC, Acworth IN (2004) J Am Chem Mass Spectrom 15:1717–1726

    CAS  Google Scholar 

  114. Jurva U, Bissel P, Isin EM, Igarashi K, Kuttab S, Castagnoli N (2005) J Am Chem Soc 127:12368–12377

    CAS  Google Scholar 

  115. Nozaki K, Kitagawa H, Kimura S, Kagayama, Arakawa R (2006) J Mass Spectrom 41:606–612

    CAS  Google Scholar 

  116. Iwahashi H, Ishii T (1997) J Chromatogr A 773:23–31

    CAS  Google Scholar 

  117. Van Leeuwen SM, Blankert B, Kauffmann JM, Karst U (2005) Anal Bioanal Chem 382:742–750

    Google Scholar 

  118. Lohmann W, Karst U (2006) Anal Bioanal Chem 386:1701–1708

    CAS  Google Scholar 

  119. Yan Z, Caldwell GW (2004) Anal Chem 76:6835–6847

    CAS  Google Scholar 

  120. Madsen KG, Olsen J, Skonberg C, Hansen SH, Jurva U (2007) Chem Res Toxicol 20:821–831

    CAS  Google Scholar 

  121. Lohmann W, Karst U (2007) Anal Chem 79:6831–6839

    CAS  Google Scholar 

  122. Tahara K, Yano Y, Kanagawa K, Abe Y, Yamada J, Iijima S, Mochizuki M, Nishikawa T (2007) Chem Pharm Bull 55:1207–1212

    Google Scholar 

  123. He K, Woolf KF, Kindt EK, Fielder AE, Talaat RE (2001) Biochem Pharmacol 62:191–198

    CAS  Google Scholar 

  124. Biesaga M, Pyrzyńska K, Trojanowicz M (2000) Talanta 51:209–224

    CAS  Google Scholar 

Download references

Acknowledgement

Financial support by the Deutsche Forschungsgemeinschaft (DFG, Bonn, Germany) and the Fonds der Chemischen Industrie (Frankfurt/Main, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmann, W., Karst, U. Biomimetic modeling of oxidative drug metabolism. Anal Bioanal Chem 391, 79–96 (2008). https://doi.org/10.1007/s00216-007-1794-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1794-x

Keywords

Navigation