Skip to main content
Log in

Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of miniaturised separation techniques such as capillary LC, nano LC or capillary electrophoresis offers a number of advantages in terms of analytical performance, solvent consumption and the ability to analyse very small sample amounts. These features make them attractive for various bioanalytical tasks, in particular those related to the analysis of proteins and peptides. The skillful combination of such techniques with inductively coupled plasma mass spectrometry (ICP-MS) has recently permitted the design of combined analytical approaches utilising either elemental or molecule-specific detection techniques such as electrospray ionisation (ESI) or matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry in a highly complementary manner for, as an example, proteomics-orientated research (heteroatom-tagged proteomics). Such hybrid approaches are, in particular, providing promising new options for the fast screening of complex samples for specific metal-containing or—more generally speaking—heteroatom-containing biomolecules, as well as the accurate absolute quantification of biomolecules, which is still an unsolved problem in bioanalysis. Here, progress in as well as the potential and the special requirements of hyphenating miniaturised separation techniques with ICP-MS are reviewed and critically discussed. In addition, selected applications are highlighted to indicate current and possible future trends within this emerging area of research.

Application of miniaturized separation techniques and ICP-MS for heteroatom-tagged proteomics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325. doi:10.1007/s10646-008-0206-0

    Google Scholar 

  2. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395. doi:10.1007/s10646-008-0208-y

    Google Scholar 

  3. Anderson NL, Anderson NG (2003) The human plasma proteome: history, character, and diagnostic prospects (vol 1, pg 845, 2002). Mol Cell Proteomics 2(1):50–50

    Google Scholar 

  4. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101(2):269–295

    Article  CAS  Google Scholar 

  5. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  6. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9(6):1451–1468. doi:10.1002/pmic.200800454

    Article  CAS  Google Scholar 

  7. Huang EC, Henion JD (1991) Packed-capillary liquid-chromatography ion-spray tandem mass-spectrometry determination of biomolecules. Anal Chem 63(7):732–739

    Article  CAS  Google Scholar 

  8. Banks JF (1996) High-sensitivity peptide mapping using packed-capillary liquid chromatography and electrospray ionization mass spectrometry. J Chromatogr A 743(1):99–104

    Article  CAS  Google Scholar 

  9. Bauer MD, Sun YP, Wang F (1999) Sequencing of gel-isolated proteins using microblotter capillary liquid chromatography-electrospray mass spectrometry. J Protein Chem 18(3):337–347

    Article  CAS  Google Scholar 

  10. Cagney G, Emili A (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat Biotechnol 20(2):163–170

    Article  CAS  Google Scholar 

  11. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    Google Scholar 

  12. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Google Scholar 

  13. Bruins AP (1998) Mechanistic aspects of electrospray ionization. J Chromatogr A 794(1–2):345–357

    Article  CAS  Google Scholar 

  14. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68(1):1–8

    Article  CAS  Google Scholar 

  15. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom 136(2–3):167–180

    Google Scholar 

  16. Karlsson KE, Novotny M (1988) Separation efficiency of slurry-packed liquid-chromatography microcolumns with very small inner diameters. Anal Chem 60(17):1662–1665

    Article  CAS  Google Scholar 

  17. Guryca V, Kieffer-Jaquinod S, Garin J, Masselon CD (2008) Prospects for monolithic nano-LC columns in shotgun proteomics. Anal Bioanal Chem 392(7–8):1291–1297. doi:10.1007/s00216-008-2433-x

    Google Scholar 

  18. Chervet JP, Ursem M, Salzmann JB (1996) Instrumental requirements for nanoscale liquid chromatography. Anal Chem 68(9):1507–1512

    Article  CAS  Google Scholar 

  19. Tomer KB, Moseley MA, Deterding LJ, Parker CE (1994) Capillary liquid-chromatography mass-spectrometry. Mass Spectrom Rev 13(5–6):431–457

    Article  CAS  Google Scholar 

  20. Hernandez-Borges J, Aturki Z, Rocco A, Fanali S (2007) Recent applications in nanoliquid chromatography. J Sep Sci 30(11):1589–1610. doi:10.1002/jssc.200700061

    Article  CAS  Google Scholar 

  21. Plumb R, Castro-Perez J, Granger J, Beattie I, Joncour K, Wright A (2004) Ultra-performance liquid chromatography coupled to quadrupole-orthogonal time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18(19):2331–2337. doi:10.1002/Rcm.1627

    Article  CAS  Google Scholar 

  22. Abian J, Oosterkamp AJ, Gelpi E (1999) Comparison of conventional, narrow-bore and capillary liquid chromatography mass spectrometry for electrospray ionization mass spectrometry: practical considerations. J Mass Spectrom 34(4):244–254

    Google Scholar 

  23. Oosterkamp AJ, Gelpi E, Abian J (1998) Quantitative peptide bioanalysis using column-switching nano liquid chromatography mass spectrometry. J Mass Spectrom 33(10):976–983

    Article  CAS  Google Scholar 

  24. Jakubowski N (2008) Analytical plasma ion sources for elemental mass spectrometry: where are we coming from—where are we going to? J Anal At Spectrom 23(5):673–684. doi:10.1039/B717321k

    Google Scholar 

  25. Zoorob GK, McKiernan JW, Caruso JA (1998) ICP-MS for elemental speciation studies. Mikrochim Acta 128(3–4):145–168

    Google Scholar 

  26. Sanz-Medel A (1998) Trace element analytical speciation in biological systems: importance, challenges and trends. Spectrochim Acta Part B 53(2):197–211

    Google Scholar 

  27. Szpunar J (2000) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125(5):963–988

    Article  CAS  Google Scholar 

  28. Szpunar J, Lobinski R, Prange A (2003) Hyphenated techniques for elemental speciation in biological systems. Appl Spectrosc 57(3):102A–112A

    Article  CAS  Google Scholar 

  29. Lobinski R, Schaumlöffel D, Szpunar J (2006) Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom Rev 25(2):255–289

    Article  CAS  Google Scholar 

  30. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38(4):1119–1138. doi:10.1039/B713633c

    Google Scholar 

  31. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19(1):5–14

    Article  CAS  Google Scholar 

  32. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130(4):442–465

    Google Scholar 

  33. Prange A, Pröfrock D (2008) Chemical labels and natural element tags for the quantitative analysis of bio-molecules. J Anal At Spectrom 23(4):432–459. doi:10.1039/B717916m

    Article  CAS  Google Scholar 

  34. Sanz-Medel A, Montes-Bayon M, de la Campa MDRF, Encinar JR, Bettmer J (2008) Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem 390(1):3–16. doi:10.1007/s00216-007-1615-2

    Article  CAS  Google Scholar 

  35. Sanz-Medel A (2008) Heteroatom (isotope)-tagged proteomics via ICP-MS: screening and quantification of proteins and their post-translational modifications. Anal Bioanal Chem 391(3):885–894. doi:10.1007/s00216-008-2083-z

  36. Bettmer J, Montes-Bayon M, Encinar JR, Sanchez MLF, de la Campa MDRF, Sanz-Medel A (2009) The emerging role of ICP-MS in proteomic analysis. J Proteomics 72(6):989–1005. doi:10.1016/j.jprot.2009.05.003

    Google Scholar 

  37. Svantesson E, Pettersson J, Markides KE (2002) The use of inorganic elemental standards in the quantification of proteins and biomolecular compounds by inductively coupled plasma spectrometry. J Anal At Spectrom 17(5):491–496

    Article  CAS  Google Scholar 

  38. Deitrich CL, Raab A, Pioselli B, Thomas-Oates JE, Feldmann J (2007) Chemical preparation of an isotopically enriched superoxide dismutase and its characterization as a standard for species-specific isotope dilution analysis. Anal Chem 79(21):8381–8390. doi:10.1021/Ac071397t

    Article  CAS  Google Scholar 

  39. Navaza AP, Encinar JR, Sanz-Medel A (2007) Quantitative protein phosphorylation analysis: the role of ICP-MS. J Anal At Spectrom 22(10):1223–1237. doi:10.1039/B703555a

    Google Scholar 

  40. Pröfrock D, Leonhard P, Ruck W, Prange A (2005) Development and characterisation of a new interface for coupling capillary LC with collision-cell ICP-MS and its application for phosphorylation profiling of tryptic protein digests. Anal Bioanal Chem 381(1):194–204. doi:10.1007/s00216-004-2930-5

  41. Schaumlöffel D, Prange A (1999) A new interface for combining capillary electrophoresis with inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem 364(5):452–456

    Article  CAS  Google Scholar 

  42. Prange A, Pröfrock D (2005) Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem 383(3):372–389. doi:10.1007/s00216-005-3420-0

  43. Polec-Pawlak K, Abramski JK, Ferenc J, Foteeva LS, Timerbaev AR, Keppler BK, Jarosz M (2008) Application of capillary electrophoresis-inductively coupled plasma mass spectrometry to comparative studying of the reactivity of antitumor ruthenium(III) complexes differing in the nature of counter-ion toward human serum proteins. J Chromatogr A 1192(2):323–326. doi:10.1016/j.chroma.2008.04.009

    Google Scholar 

  44. Kannamkumarath SS, Wrobel K, B'Hymer C, Caruso JA (2002) Capillary electrophoresis-inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chromatogr A 975(2):245–266

    Google Scholar 

  45. Prange A, Schaumloffel D (1999) Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. J Anal At Spectrom 14(9):1329–1332

    Article  CAS  Google Scholar 

  46. Taylor KA, Sharp BL, Lewis DJ, Crews HM (1998) Design and characterisation of a microconcentric nebuliser interface for capillary electrophoresis-inductively coupled plasma mass spectrometry. J Anal At Spectrom 13(10):1095–1100

    Article  CAS  Google Scholar 

  47. Tangen A, Lund W (2000) Capillary electrophoresis-inductively coupled plasma mass spectrometry interface with minimised dead volume for high separation efficiency. J Chromatogr A 891(1):129–138

    Article  CAS  Google Scholar 

  48. Ackley KL, Day JA, Caruso JA (2000) Separation of metalloporphyrins by capillary electrophoresis with UV detection and inductively coupled plasma mass spectrometric detection. J Chromatogr A 888(1–2):293–298

    Google Scholar 

  49. Casiot C, Donard OFX, Potin-Gautier M (2002) Optimization of the hyphenation between capillary zone electrophoresis and inductively coupled plasma mass spectrometry for the measurement of As-, Sb-, Se- and Te-species, applicable to soil extracts. Spectrochim Acta Part B 57(1):173–187

    Google Scholar 

  50. Kirlew PW, Castillano MTM, Caruso JA (1998) An evaluation of ultrasonic nebulizers as interfaces for capillary electrophoresis of inorganic anions and cations with inductively coupled plasma mass spectrometric detection. Spectrochim Acta Part B 53(2):221–237

    Google Scholar 

  51. Kinzer JA, Olesik JW, Olesik SV (1996) Effect of laminar flow in capillary electrophoresis: model and experimental results on controlling analysis time and resolution with inductively coupled plasma mass spectrometry detection. Anal Chem 68(18):3250–3257

    Google Scholar 

  52. Liu Y, Lopezavila V, Zhu JJ, Wiederin DR, Beckert WF (1995) Capillary electrophoresis coupled online with inductively-coupled plasma-mass spectrometry for elemental speciation. Anal Chem 67(13):2020–2025

    Article  Google Scholar 

  53. Bendahl L, Gammelgaard B, Jons O, Farver O, Hansen SH (2001) Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation. J Anal At Spectrom 16(1):38–42

    Article  CAS  Google Scholar 

  54. Lu GH, Bird SM, Barnes RM (1995) Interface for capillary electrophoresis and inductively-coupled plasma-mass spectrometry. Anal Chem 67(17):2949–2956

    Article  CAS  Google Scholar 

  55. Deng BY, Chan WT (2000) Simple interface for capillary electrophoresis-inductively coupled plasma atomic emission spectrometry. J Chromatogr A 891(1):139–148

    Article  CAS  Google Scholar 

  56. Chan YY, Chan WT (1999) Interface for capillary electrophoresis coupled with inductively coupled plasma atomic emission spectrometry. J Chromatogr A 853(1–2):141–149

    Article  CAS  Google Scholar 

  57. Mei E, Ichihashi H, Gu WF, Yamasaki SI (1997) Interface for coupling capillary electrophoresis to inductively coupled plasma and on-column concentration technique. Anal Chem 69(11):2187–2192

    Article  CAS  Google Scholar 

  58. Li JX, Umemura T, Odake T, Tsunoda K (2001) A high-efficiency cross-flow micronebulizer interface for capillary electrophoresis and inductively coupled plasma mass spectrometry. Anal Chem 73(24):5992–5999

    Article  CAS  Google Scholar 

  59. B'Hymer C, Sutton RMC, Sutton KL, Caruso JA (1999) The use of sol-gel frits to minimize suction effects in capillary electrophoresis-nebulizer interfaces for plasma spectrometry. Anal Commun 36(9–10):349–353

    Article  Google Scholar 

  60. B'Hymer C, Day JA, Caruso JA (2000) Evaluation of a microconcentric nebulizer and its suction effect in a capillary electrophoresis interface with inductively coupled plasma mass spectrometry. Appl Spectrosc 54(7):1040–1046

    Article  Google Scholar 

  61. Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2001) Analysis of protein phosphorylation by capillary liquid chromatography coupled to element mass spectrometry with P-31 detection and to electrospray mass spectrometry. Anal Chem 73(1):29–35

    Google Scholar 

  62. Balcaen LIL, De Samber B, De Wolf K, Cuyckens F, Vanhaecke F (2007) Hyphenation of reverse-phase HPLC and ICP-MS for metabolite profiling—application to a novel antituberculosis compound as a case study. Anal Bioanal Chem 389(3):777–786. doi:10.1007/s00216-007-1303-2

    Google Scholar 

  63. Kovacevic M, Leber R, Kohlwein SD, Goessler W (2004) Application of inductively coupled plasma mass spectrometry to phospholipid analysis. J Anal At Spectrom 19(1):80–84

    Article  CAS  Google Scholar 

  64. Tarr MA, Zhu GX, Browner RF (1993) Microflow ultrasonic nebulizer for inductively-coupled plasma-atomic emission-spectrometry. Anal Chem 65(13):1689–1695

    Article  CAS  Google Scholar 

  65. Wang LQ, May SW, Browner RF, Pollock SH (1996) Low-flow interface for liquid chromatography inductively coupled plasma mass spectrometry speciation using an oscillating capillary nebulizer. J Anal At Spectrom 11(12):1137–1146

    Article  Google Scholar 

  66. Ivanov AR, Zang L, Karger BL (2003) Low-attomole electrospray ionization MS and MS/MS analysis of protein tryptic digests using 20-μm-i.d. polystyrene-divinylbenzene monolithic capillary columns. Anal Chem 75(20):5306–5316

    Google Scholar 

  67. Premstaller A, Oberacher H, Walcher W, Timperio AM, Zolla L, Chervet JP, Cavusoglu N, van Dorsselaer A, Huber CG (2001) High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Anal Chem 73(11):2390–2396

    Google Scholar 

  68. Luo QZ, Tang KQ, Yang F, Elias A, Shen YF, Moore RJ, Zhao R, Hixson KK, Rossie SS, Smith RD (2006) More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry. J Proteome Res 5(5):1091–1097

    Google Scholar 

  69. Wind M, Wesch H, Lehmann WD (2001) Protein phosphorylation degree: determination by capillary liquid chromatography and inductively coupled plasma mass spectrometry. Anal Chem 73(13):3006–3010

    Google Scholar 

  70. Wind M, Eisenmenger A, Lehmann WD (2002) Modified direct injection high efficiency nebulizer with minimized dead volume for the analysis of biological samples by micro- and nano-LC-ICP-MS. J Anal At Spectrom 17(1):21–26

    Google Scholar 

  71. Todoli JL, Mermet JM (2001) Evaluation of a direct injection high-efficiency nebulizer (DIHEN) by comparison with a high-efficiency nebulizer (HEN) coupled to a cyclonic spray chamber as a liquid sample introduction system for ICP-AES. J Anal At Spectrom 16(5):514–520. doi:10.1039/B009430g

  72. Prange A, Schaumlöffel D (1999) Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. J Anal At Spectrom 14(9):1329–1332

    Article  CAS  Google Scholar 

  73. Schaumlöffel D, Prange A (1999) A new interface for combining capillary electrophoresis with inductively coupled plasma-mass spectrometry. Fresenius J Anal Chem 364(5):452–456

    Article  Google Scholar 

  74. Schaumlöffel D, Encinar JR, Lobinski R (2003) Development of a sheathless interface between reversed-phase capillary HPLC and ICPMS via a microflow total consumption nebulizer for selenopeptide mapping. Anal Chem 75(24):6837–6842

    Google Scholar 

  75. Pröfrock D (2010) Hyphenation of capillary-LC with ICP-MS and parallel on-line micro fraction collection for MALDI-TOF-TOF analysis—complementary tools for protein phosphorylation analysis. J Anal At Spectrom 25(3):334–344. doi:10.1039/B921145d

    Google Scholar 

  76. Giusti P, Lobinski R, Szpunar J, Schaumlöffel D (2006) Development of a nebulizer for a sheathless interfacing of nanoHPLC and ICPMS. Anal Chem 78(3):965–971

    Google Scholar 

  77. Garcia BA, Shabanowitz J, Hunt DF (2005) Analysis of protein phosphorylation by mass spectrometry. Methods 35(3):256–264

    Article  CAS  Google Scholar 

  78. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Google Scholar 

  79. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5(16):4052–4061

    Article  CAS  Google Scholar 

  80. Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41

    Google Scholar 

  81. Kalume DE, Molina H, Pandey A (2003) Tackling the phosphoproteome: tools and strategies. Curr Opin Chem Biol 7(1):64–69

    Google Scholar 

  82. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403

    Article  CAS  Google Scholar 

  83. Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8(21):4466–4483. doi:10.1002/pmic.200800329

    Google Scholar 

  84. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. doi:10.1007/s00216-007-1486-6

    Google Scholar 

  85. Pütz S, Reinders J, Reinders Y, Sickmann A (2005) Mass spectrometry-based peptide quantification: applications and limitations. Expert Rev Proteomic 2(3):381–392

    Google Scholar 

  86. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    Article  CAS  Google Scholar 

  87. Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Sulfur as the key element for quantitative protein analysis by capillary liquid chromatography coupled to element mass spectrometry. Angew Chem Int Ed 42(29):3425–3427

    Article  CAS  Google Scholar 

  88. Wind M, Wegener A, Kellner R, Lehmann WD (2005) Analysis of Chea histidine phosphorylation and its influence on protein stability by high-resolution element and electrospray mass spectrometry. Anal Chem 77(7):1957–1962

    Google Scholar 

  89. Wind M, Gosenca D, Kubler D, Lehmann WD (2003) Stable isotope phospho-profiling of fibrinogen and fetuin subunits by element mass spectrometry coupled to capillary liquid chromatography. Anal Biochem 317(1):26–33

    Article  CAS  Google Scholar 

  90. Wind M, Kelm O, Nigg EA, Lehmann WD (2002) Identification of phosphorylation sites in the polo-like kinases plx1 and pik1 by a novel strategy based on element and electrospray high resolution mass spectrometry. Proteomics 2(11):1516–1523

    Article  CAS  Google Scholar 

  91. Krüger R, Wolschin F, Weckwerth W, Bettmer J, Lehmann WD (2007) Plant protein phosphorylation monitored by capillary liquid chromatography-element mass spectrometry. Biochem Biophys Res Commun 355(1):89–96

    Article  Google Scholar 

  92. Krüger R, Kübler D, Pallisse R, Burkovski A, Lehmann WD (2006) Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. Anal Chem 78(6):1987–1994

    Article  Google Scholar 

  93. Zinn N, Hahn B, Pipkorn R, Schwarzer D, Lehmann WD (2009) Phosphorus-based absolutely quantified standard peptides for quantitative proteomics. J Proteome Res 8(10):4870–4875. doi:10.1021/pr900494m

    Article  CAS  Google Scholar 

  94. Navaza AP, Encinar JR, Sanz-Medel A (2007) Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew Chem Int Ed 46(4):569–571

    Article  CAS  Google Scholar 

  95. Pröfrock D, Prange A (2009) Compensation of gradient related effects when using capillary liquid chromatography and inductively coupled plasma mass spectrometry for the absolute quantification of phosphorylated peptides. J Chromatogr A 1216 6706–6715

    Google Scholar 

  96. Yan JX, Packer NH, Gooley AA, Williams KL (1998) Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 808(1–2):23–41

    Google Scholar 

  97. MacDonald JA, Mackey AJ, Pearson WR, Haystead TAJ (2002) A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol Cell Proteomics 1(4):314–322

    Article  CAS  Google Scholar 

  98. Navaza AP, Encinar JR, Medel AS (2007) Quantitative protein phosphorylation analysis: the role of ICP-MS. J Anal At Spectrom. doi:10.1039/b703555a

  99. Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100(2):238–253. doi:10.1017/S0007114508922522

    Google Scholar 

  100. Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–241

    Article  CAS  Google Scholar 

  101. Wrobel K, Wrobel K, Caruso JA (2005) Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection. Anal Bioanal Chem 381(2):317–331

    Article  CAS  Google Scholar 

  102. Infante HG, Hearn R, Catterick T (2005) Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium. Anal Bioanal Chem 382(4):957–967

    Article  CAS  Google Scholar 

  103. Dernovics M, Giusti P, Lobinski R (2007) ICP-MS-assisted nanoHPLC-electrospray Q/time-of-flight MS/MS selenopeptide mapping in Brazil nuts. J Anal At Spectrom 22(1):41–50

    Google Scholar 

  104. Ballihaut G, Mounicou S, Lobinski R (2007) Multitechnique mass-spectrometric approach for the detection of bovine glutathione peroxidase selenoprotein: focus on the selenopeptide. Anal Bioanal Chem 388(3):585–591. doi:10.1007/s00216-007-1257-4

    Google Scholar 

  105. Encinar JR, Ouerdane L, Buchmann W, Tortajada J, Lobinski R, Szpunar J (2003) Identification of water-soluble selenium-containing proteins in selenized yeast by size-exclusion-reversed-phase HPLC/ICPMS followed by MALDI-TOF and electrospray Q-TOF mass spectrometry. Anal Chem 75(15):3765–3774

    Google Scholar 

  106. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  CAS  Google Scholar 

  107. Giusti P, Schaumlöffel D, Encinar JR, Szpunar J (2005) Interfacing reversed-phase nanoHPLC with ICP-MS and on-line isotope dilution analysis for the accurate quantification of selenium-containing peptides in protein tryptic digests. J Anal At Spectrom 20(10):1101–1107

    Google Scholar 

  108. Wierenga SK, Zocher MJ, Mirus MM, Conrads TP, Goshe MB, Veenstra TD (2002) A method to evaluate tryptic digestion efficiency for high-throughput proteome analyses. Rapid Commun Mass Spectrom 16(14):1404–1408. doi:10.1002/Rcm.729

    Article  CAS  Google Scholar 

  109. Giusti P, Schaumlöffel D, Preud’homme H, Szpunar J, Lobinski R (2006) Selenopeptide mapping in a selenium-yeast protein digest by parallel nanoHPLC-ICP-MS and nanoHPLC-electrospray-MS/MS after on-line preconcentration. J Anal At Spectrom 21(1):26–32

    Google Scholar 

  110. Behne D, Kyriakopoulos A (2001) Mammalian selenium-containing proteins. Annu Rev Nutr 21:453–473

    Article  CAS  Google Scholar 

  111. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5(5):538–543. doi:10.1038/sj.embor.7400126

    Article  CAS  Google Scholar 

  112. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443

    Article  CAS  Google Scholar 

  113. Zhang H, Yan W, Aebersold R (2004) Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol 8(1):66–75

    Google Scholar 

  114. Heumann KG, Rottmann L, Vogl J (1994) Elemental speciation with liquid-chromatography inductively-coupled plasma isotope-dilution mass-spectrometry. J Anal At Spectrom 9(12):1351–1355

    Google Scholar 

  115. Rottmann L, Heumann KG (1994) Development of an online isotope-dilution technique with HPLC ICP-MS for the accurate determination of elemental species. Fresenius J Anal Chem 350(4–5):221–227

    Google Scholar 

  116. Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal At Spectrom 13(9):1001–1008

    Article  CAS  Google Scholar 

  117. Heumann KG, Gallus SM, Radlinger G, Vogl J (1998) Accurate determination of element species by on-line coupling of chromatographic systems with ICP-MS using isotope dilution technique. Spectrochim Acta Part B 53(2):273–287

    Google Scholar 

  118. Schaumlöffel D, Prange A, Marx G, Heumann KG, Brätter P (2002) Characterization and quantification of metallothionein isoforms by capillary electrophoresis-inductively coupled plasma-isotope-dilution mass spectrometry. Anal Bioanal Chem 372(1):155–163

    Article  Google Scholar 

  119. Prange A, Schaumlöffel D (2002) Hyphenated techniques for the characterisation and quantification of metallothionein isoforms. Anal Bioanal Chem 373:441–453

    Article  CAS  Google Scholar 

  120. Zinn N, Krüger R, Leonhard P, Bettmer J (2008) μ-LC coupled to ICP-SFMS with post-column isotope dilution analysis of sulfur for absolute protein quantification. Anal Bioanal Chem 391(2):537–543. doi:10.1007/s00216-008-2025-9

    Google Scholar 

  121. Schaumlöffel D, Giusti P, Preud’Homme H, Szpunar J, Lobinski R (2007) Precolumn isotope dilution analysis in nanoHPLC-ICPMS for absolute quantification of sulfur-containing peptides. Anal Chem 79(7):2859–2868

    Google Scholar 

  122. Takatera K, Watanabe T (1992) Application of high-performance liquid-chromatography inductively coupled plasma mass-spectrometry to the speciation of cadmium-binding metallothionein-like protein in a cyanobacterium. Anal Sci 8(4):469–474

    Article  CAS  Google Scholar 

  123. Kutscher DJ, Busto MED, Zinn N, Sanz-Medel A, Bettmer J (2008) Protein labelling with mercury tags: fundamental studies on ovalbumin derivatised with p-hydroxymercuribenzoic acid (PHMB). J Anal At Spectrom 23(10):1359–1364. doi:10.1039/B806118a

    Google Scholar 

  124. Navaza AP, Encinar JR, Ballesteros A, Gonzalez JM, Sanz-Medel A (2009) Capillary HPLC-ICPMS and tyrosine iodination for the absolute quantification of peptides using genetic standards. Anal Chem 81(13):5390–5399. doi:10.1021/Ac9005606

    Google Scholar 

  125. Rappel C, Schaumlöffel D (2009) Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis. Anal Chem 81(1):385–393. doi:10.1021/Ac801814a

    Google Scholar 

  126. Schaumlöffel D, Giusti P, Zoriy MV, Pickhardt C, Szpunar J, Lobinski R, Becker JS (2005) Ultratrace determination of uranium and plutonium by nano-volume flow injection double-focusing sector field inductively coupled plasma mass spectrometry (NFI-ICP-SFMS). J Anal At Spectrom 20(1):17–21

    Google Scholar 

  127. Giusti P, Ordonez YN, Lienemann CP, Schaumlöffel D, Bouyssiere B, Lobinski R (2007) μ-Flow-injection-ICP collision cell MS determination of molybdenum, nickel and vanadium in petroleum samples using a modified total consumption micronebulizer. J Anal At Spectrom 22(1):88–92

    Google Scholar 

  128. Staes A, Timmerman E, Van Damme I, Helsens K, Vandekerckhove J, Vollmer M, Gevaert K (2007) Assessing a novel microfluidic interface for shotgun proteome analyses. J Sep Sci 30(10):1468–1476. doi:10.1002/jssc.200600012

    Article  CAS  Google Scholar 

  129. Stefanka Z, Koellensperger G, Stingeder G, Hann S (2006) Down-scaling narrowbore LC-ICP-MS to capillary LC-ICP-MS: a comparative study of different introduction systems. J Anal At Spectrom 21(1):86–89

    Google Scholar 

  130. Schaumlöffel D, Giusti P, Preud’Homme H, Szpunar J, Lobinski R (2007) Precolumn isotope dilution analysis in nanoHPLC-ICPMS for absolute quantification of sulfur-containing peptides. Anal Chem 79(7):2859–2868

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pröfrock.

Additional information

Published in the special issue Focus on Bioanalysis with Guest Editors Antje J. Baeumner, Günter Gauglitz and Frieder W. Scheller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pröfrock, D. Progress and possible applications of miniaturised separation techniques and elemental mass spectrometry for quantitative, heteroatom-tagged proteomics. Anal Bioanal Chem 398, 2383–2401 (2010). https://doi.org/10.1007/s00216-010-3901-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3901-7

Keywords

Navigation