Skip to main content
Log in

Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantitative multinuclear high-resolution magic angle spinning was performed in order to determine the tissue pH values of and the absolute metabolite concentrations in 33 samples of human brain tumour tissue. Metabolite concentrations were quantified by 1D 1H and 31P HRMAS using the electronic reference to in vivo concentrations (ERETIC) synthetic signal. 1H–1H homonuclear and 1H–31P heteronuclear correlation experiments enabled the direct assessment of the 1H–31P spin systems for signals that suffered from overlapping in the 1D 1H spectra, and linked the information present in the 1D 1H and 31P spectra. Afterwards, the main histological features were determined, and high heterogeneity in the tumour content, necrotic content and nonaffected tissue content was observed. The metabolite profiles obtained by HRMAS showed characteristics typical of tumour tissues: rather low levels of energetic molecules and increased concentrations of protective metabolites. Nevertheless, these characteristics were more strongly correlated with the total amount of living tissue than with the tumour cell contents of the samples alone, which could indicate that the sampling conditions make a significant contribution aside from the effect of tumour development in vivo. The use of methylene diphosphonic acid as a chemical shift and concentration reference for the 31P HRMAS spectra of tissues presented important drawbacks due to its interaction with the tissue. Moreover, the pH data obtained from 31P HRMAS enabled us to establish a correlation between the pH and the distance between the N(CH3)3 signals of phosphocholine and choline in 1H spectra of the tissue in these tumour samples.

1H-31P HSQC (upper) and TOCSY (lower) spectra with the corresponding 1D 1H and 31P spectra for one GBM sample. The paths for homo and heteronuclear assignment are drawn as dashed lines (in blue for GPC, in red for GPE, in green for PC and in yellow for PE). The signals can be observed in the corresponding 1D 31P spectrum by the right margin of the HSQC spectrum, but not in the crowded 1D 1H spectrum above the HSQC spectrum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ala:

Alanine

Cho:

Choline

Cr:

Creatine

ERETIC:

Electronic reference to in vivo concentrations

FA:

Fatty acids

GABA:

γ-Aminobutyric acid

GBM:

Glioblastoma multiforme

Gln:

Glutamine

Glu:

Glutamate

Gly:

Glycine

GPC:

Glycerophosphocholine

GPE:

Glycerophosphorylethanolamine

GSH:

Glutathione

HRMAS:

High-resolution magic angle spinning

MDPA:

Methylene diphosphonic acid

mI:

Myo-inositol

NAA:

N-Acetylaspartate

NAT:

Nonaffected tissue

PC:

Phosphocholine

PCr:

Phosphocreatine

PDE:

Phosphodiesters

PE:

Phosphoethanolamine

PME:

Phosphomonoesters

Tau:

Taurine

References

  1. Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Cancer Res 58:1825–1832

    CAS  Google Scholar 

  2. Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) Magn Reson Med 60:1237–1242

    Article  CAS  Google Scholar 

  3. Sjobakk TE, Johansen R, Bathen TF, Sonnewald U, Juul R, Torp SH, Lundgren S, Gribbestad IS (2008) NMR Biomed 21:175–185

    Article  Google Scholar 

  4. Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) NMR Biomed 17:191–205

    Article  CAS  Google Scholar 

  5. Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer IJ (2008) Magn Reson Med 59:959–965

    Article  CAS  Google Scholar 

  6. Wilson M, Davies NP, Brundler MA, McConville C, Grundy RG, Peet AC (2009) Mol Cancer 8:6

    Article  Google Scholar 

  7. Martinez-Bisbal MC, Monleon D, Assemat O, Piotto M, Piquer J, Llacer JL, Celda B (2009) NMR Biomed 22:199–206

    Article  CAS  Google Scholar 

  8. Martínez-Granados B, Monleón D, Martínez-Bisbal MC, Rodrigo JM, del Olmo J, Lluch P, Ferrández A, Martí-Bonmatí L, Celda B (2006) NMR Biomed 19:90–100

    Article  Google Scholar 

  9. Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) Radiology 174:401–409

    CAS  Google Scholar 

  10. Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD Jr, Bluml S (2005) Magn Reson Med 53:22–29

    Article  Google Scholar 

  11. Wijnen JP, Scheenen TW, Klomp DW, Heerschap A (2010) NMR Biomed 23:968–976

    Article  CAS  Google Scholar 

  12. Podo F (1999) NMR Biomed 12:413–439

    Article  CAS  Google Scholar 

  13. Griffiths JR, Cady E, Edwards RH, McCready VR, Wilkie DR, Wiltshaw E (1983) Lancet 1:1435–1436

    Article  CAS  Google Scholar 

  14. Robitaille PL, Robitaille PA, Gordon Brown G, Brown GG (1991) J Magn Reson 92:73–84, 1969

    Article  CAS  Google Scholar 

  15. Griffiths JR (1991) Br J Cancer 64:425–427

    Article  CAS  Google Scholar 

  16. Payne GS, Troy H, Vaidya SJ, Griffiths JR, Leach MO, Chung YL (2006) NMR Biomed 19:593–598

    Article  CAS  Google Scholar 

  17. De Silva SS, Payne GS, Thomas V, Carter PG, Ind TE, deSouza NM (2009) NMR Biomed 22:191–198

    Article  Google Scholar 

  18. Wang Y, Cloarec O, Tang H, Lindon JC, Holmes E, Kochhar S, Nicholson JK (2008) Anal Chem 80:1058–1066

    Article  CAS  Google Scholar 

  19. Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) NMR Biomed 14:307–317

    Article  CAS  Google Scholar 

  20. Srivastava NK, Pradhan S, Gowda GA, Kumar R (2010) NMR Biomed 23:113–122

    Article  CAS  Google Scholar 

  21. Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557

    Article  CAS  Google Scholar 

  22. Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Magn Reson Med 61:525–532

    Article  CAS  Google Scholar 

  23. Ben Sellem D, Elbayed K, Neuville A, Moussallieh FM, Lang-Averous G, Piotto M, Bellocq JP, Namer IJ (2011) J Oncol 2011:174019

    Article  CAS  Google Scholar 

  24. Bourne R, Dzendrowskyj T, Mountford C (2003) NMR Biomed 16:96–101

    Article  CAS  Google Scholar 

  25. Martinez-Bisbal MC, Esteve V, Martinez-Granados B, Celda B (2011) J Biomed Biotechnol 2011:763684, Epub 2010 Sep 5

    Article  Google Scholar 

  26. Celda B, Montelione GT (1993) J Magn Reson B 101:189–193

    Article  CAS  Google Scholar 

  27. Esteve V, Celda B (2008) Magn Reson Mater Phys MAGMA 21:484–484

    Google Scholar 

  28. Collins TJ (2007) Biotechniques 43:25–30

    Article  Google Scholar 

  29. Govindaraju V, Young K, Maudsley AA (2000) NMR Biomed 13:129–153

    Article  CAS  Google Scholar 

  30. Fan TW-M (1996) Prog Nucl Magn Reson Spectrosc 28:161–219

    CAS  Google Scholar 

  31. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL (2008) Nucleic Acids Res 36:D402–D408

    Article  CAS  Google Scholar 

  32. Kriat M, Vion-Dury J, Confort-Gouny S, Favre R, Viout P, Sciaky M, Sari H, Cozzone PJ (1993) J Lipid Res 34:1009–1019

    CAS  Google Scholar 

  33. Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR Biomed 21:272–288

    Article  CAS  Google Scholar 

  34. Daykin CA, Corcoran O, Hansen SH, Bjornsdottir I, Cornett C, Connor SC, Lindon JC, Nicholson JK (2001) Anal Chem 73:1084–1090

    Article  CAS  Google Scholar 

  35. Griffin JL, Lehtimaki KK, Valonen PK, Grohn OH, Kettunen MI, Yla-Herttuala S, Pitkanen A, Nicholson JK, Kauppinen RA (2003) Cancer Res 63:3195–3201

    CAS  Google Scholar 

  36. Petroff OAC, Prichard JW (1995) In: Kraicer J, Dixon SJ (eds) Methods in neurosciences. Academic, San Diego

  37. Barton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Anthony Bell B, Griffiths J (1999) Magn Reson Mater Phys Biol Med 8:121–128

    Article  CAS  Google Scholar 

  38. Sitter B, Sonnewald U, Spraul M, Fjosne HE, Gribbestad IS (2002) NMR Biomed 15:327–337

    Article  CAS  Google Scholar 

  39. Coen M, Hong YS, Cloarec O, Rhode CM, Reily MD, Robertson DG, Holmes E, Lindon JC, Nicholson JK (2007) Anal Chem 79:8956–8966

    Article  CAS  Google Scholar 

  40. Russell D, Rubinstein LJ (1998) Russel and Rubinstein's pathology of tumors of the nervous system. Arnold, London

  41. Tynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) Anal Chim Acta 648:105–112

    Article  CAS  Google Scholar 

  42. Kjaergaard M, Brander S, Poulsen F (2011) J Biomol NMR 49:139–149

    Article  CAS  Google Scholar 

  43. Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S, Gilard V, Martino R, Malet-Martino M (2011) Anal Bioanal Chem 399:987–999

    Article  CAS  Google Scholar 

  44. Chadzynski GL, Bender B, Groeger A, Erb M, Klose U (2011) J Magn Reson 212:55–63

    Article  CAS  Google Scholar 

  45. Weljie AM, Jirik FR (2011) Int J Biochem Cell Biol 43:981–989

    Article  CAS  Google Scholar 

  46. Barba I, Cabanas ME, Arus C (1999) Cancer Res 59:1861–1868

    CAS  Google Scholar 

  47. Liimatainen T, Hakumaki JM, Kauppinen RA, Ala-Korpela M (2009) NMR Biomed 22:272–279

    Article  CAS  Google Scholar 

  48. Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) NMR Biomed 21:677–685

    Article  CAS  Google Scholar 

  49. Schmitz JE, Kettunen MI, Hu D, Brindle KM (2005) Magn Reson Med 54:43–50

    Article  CAS  Google Scholar 

  50. Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM (2010) Chem Rev 110:3043–3059

    Article  CAS  Google Scholar 

  51. Hertz L (2008) Neuropharmacology 55:289–309

    Article  CAS  Google Scholar 

  52. Takahashi T, Otsuguro K, Ohta T, Ito S (2010) Br J Pharmacol 161:1806–1816

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the SCSIE-University of Valencia Microscopy Service for the histological preparations. They also acknowledge Martial Piotto (Bruker BioSpin, France) for providing the ERETIC synthetic signal. Furthermore, they acknowledge financial support from the Spanish Government project SAF2007-6547, the Generalitat Valenciana project GVACOMP2009-303, and the E.U.’s VI Framework Programme via the project “Web accessible MR decision support system for brain tumor diagnosis and prognosis, incorporating in vivo and ex vivo genomic and metabolomic data” (FP6-2002-LSH 503094). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Martínez-Bisbal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 847 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteve, V., Celda, B. & Martínez-Bisbal, M.C. Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Anal Bioanal Chem 403, 2611–2625 (2012). https://doi.org/10.1007/s00216-012-6001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6001-z

Keywords

Navigation