Skip to main content

Advertisement

Log in

Quantitative NMR for bioanalysis and metabolomics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Over the last several decades, significant technical and experimental advances have made quantitative nuclear magnetic resonance (qNMR) a valuable analytical tool for quantitative measurements on a wide variety of samples. In particular, qNMR has emerged as an important method for metabolomics studies where it is used for interrogation of large sets of biological samples and the resulting spectra are treated with multivariate statistical analysis methods. In this review, recent developments in instrumentation and pulse sequences will be discussed as well as the practical considerations necessary for acquisition of quantitative NMR experiments with an emphasis on their use for bioanalysis. Recent examples of the application of qNMR for metabolomics/metabonomics studies, the characterization of biologicals such as heparin, antibodies, and vaccines, and the analysis of botanical natural products will be presented and the future directions of qNMR discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barding GA, Fukao T, Beni S, Bailey-Serres J, Larive CK (2012) Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H NMR spectroscopy. J Proteome Res 11:320–330

    Article  CAS  Google Scholar 

  2. Holzgrabe U, Diehl BWK, Wawer I (1998) NMR spectroscopy in pharmacy. J Pharm Biomed Anal 17:557–616

    Article  CAS  Google Scholar 

  3. Maniara G, Rajamoorthi K, Rajan S, Stockton GW (1998) Method performance and validation for quantitative analysis by 1H and 31P NMR spectroscopy. Applications to analytical standards and agricultural chemicals. Anal Chem 70:4921–4928

    Article  CAS  Google Scholar 

  4. Nicholson JK, Wilson ID, Lindon JC (2011) Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics 12:103–111

    Article  CAS  Google Scholar 

  5. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2:155–168

    Article  CAS  Google Scholar 

  6. Fiehn O (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  7. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  Google Scholar 

  8. Larive CK, Jayawickrama D, Orfi L (1997) Quantitative analysis of peptides with NMR spectroscopy. Appl Spectrosc 51:1531–1536

    Article  CAS  Google Scholar 

  9. Griffiths L, Irving AM (1998) Assay by nuclear magnetic resonance spectroscopy: quantification limits. Analyst 123:1061–1068

    Article  CAS  Google Scholar 

  10. Malz F (2008) Quantitative NMR in the solution state NMR. In: Holzgrabe U, Wawer I, Diehl B (eds) NMR spectroscopy in pharmaceutical analysis. Elsevier, Oxford, pp 43–62

    Chapter  Google Scholar 

  11. Malz F, Jancke H (2005) Validation of quantitative NMR. J Pharm Biomed Anal 38:813–823

    Article  CAS  Google Scholar 

  12. Jacobsen NE (2007) NMR spectroscopy explained: simplified theory, application, and examples for organic chemistry and structural biology. Wiley, Hoboken

    Google Scholar 

  13. Szantay C Jr, Beni Z, Balogh G, Gati T (2006) The changing role of NMR spectroscopy in off-line impurity identification: a conceptual view. TrAC Trends Anal Chem 25:806–820

    Article  CAS  Google Scholar 

  14. Webb A (2012) Increasing the sensitivity of magnetic resonance spectroscopy and imaging. Anal Chem 84:9–16

    Article  CAS  Google Scholar 

  15. Styles P, Soffe NF, Scott CA, Cragg DA, Row F, White DJ, White PCJ (1984) A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J Magn Reson 60:397–404

    CAS  Google Scholar 

  16. Fratila RM, Velders AH (2011) Small-volume nuclear magnetic resonance spectroscopy. In: Cooks RG, Yeung ES (eds) Annu Rev Anal Chem 4:227–249

  17. Jones CJ, Larive CK (2012) Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal Bioanal Chem 402:61–68

    Article  CAS  Google Scholar 

  18. Ebel A, Dreher W, Leibfritz D (2006) Effects of zero-filling and apodization on spectral integrals in discrete Fourier-transform spectroscopy of noisy data. J Magn Reson 182:330–338

    Article  CAS  Google Scholar 

  19. Rabenstein DL, Millis KK, Strauss EJ (1988) Proton NMR spectroscopy of human blood plasma and red blood cells. Anal Chem 60:A1380–A1391

    Article  Google Scholar 

  20. Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou BF, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem 78:2199–2208

    Article  CAS  Google Scholar 

  21. Pauli GF, Goedecke T, Jaki BU, Lankin DC (2012) Quantitative 1H NMR. Development and potential of an analytical method: an update. J Nat Prod 75:834–851

    Article  CAS  Google Scholar 

  22. Rundlof T, Mathiasson M, Bekiroglu S, Hakkarainen B, Bowden T, Arvidsson T (2010) Survey and qualification of internal standards for quantification by 1H NMR spectroscopy. J Pharm Biomed Anal 52:645–651

    Article  CAS  Google Scholar 

  23. Hoult DI (1976) Solvent peak saturation with single-phase and quadrature Fourier transformation. J Magn Reson 21:337–347

    CAS  Google Scholar 

  24. Smallcombe SH, Patt SL, Keifer PA (1995) WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J Magn Reson Ser A 117:295–303

    Article  CAS  Google Scholar 

  25. Wu PSC, Otting G (2005) SWET for secure water suppression on probes with high quality factor. J Biomol NMR 32:243–250

    Article  CAS  Google Scholar 

  26. Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscropy of aqueous solutions. J Biomol NMR 2:661–665

    Article  CAS  Google Scholar 

  27. Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J Magn Reson Ser A 112:275–279

    Article  CAS  Google Scholar 

  28. Claridge TD (2009) High-resolution NMR techniques in organic chemistry. Tetrahedron organic chemistry, 2nd edn. Elsevier, Oxford

    Google Scholar 

  29. Xi Y, Rocke DM (2008) Baseline correction for NMR spectroscopic metabolomics data analysis. BMC Bioinformatics 9:324

    Google Scholar 

  30. Derrick TS, McCord EF, Larive CK (2002) Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background. J Magn Reson 155:217–225

    Article  CAS  Google Scholar 

  31. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30:426–432

    CAS  Google Scholar 

  32. Ye T, Zheng C, Zhang S, Gowda GAN, Vitek O, Raftery D (2012) “Add to subtract”: a simple method to remove complex background signals from the 1H nuclear magnetic resonance spectra of mixtures. Anal Chem 84:994–1002

    Article  CAS  Google Scholar 

  33. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  34. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  35. Lucas LH, Larive CK, Wilkinson PS, Huhn S (2005) Progress toward automated metabolic profiling of human serum: comparison of CPMG and gradient-filtered NMR analytical methods. J Pharm Biomed Anal 39:156–163

    Article  CAS  Google Scholar 

  36. Martin YL (1994) A global approach to accurate and automatic quantitative analysis of NMR spectra by complex least-squares curve fitting. J Magn Reson Ser A 111:1–10

    Article  CAS  Google Scholar 

  37. Pauli GF, Jaki BU, Lankin DC (2007) A routine experimental protocol for qHNMR illustrated with taxol. J Nat Prod 70:589–595

    Article  CAS  Google Scholar 

  38. Rabenstein DL, Keire DA (1991) Quantitative chemical analysis by NMR. In: Popov AI, Hallenga K (eds) Modern NMR techniques and their application in chemistry. Marcel Dekker, New York

    Google Scholar 

  39. Diehl P, Sykora S, Vogt J (1975) Automatic analysis of NMR spectra: an alternative approach. J Magn Reson 19:67–82

    CAS  Google Scholar 

  40. Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS (2011) Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49:307–323

    Article  CAS  Google Scholar 

  41. Davis RA, Charlton AJ, Godward J, Jones SA, Harrison M, Wilson JC (2007) Adaptive binning: an improved binning method for metabolomics data using the undecimated wavelet transform. Chemom Intell Lab Syst 85:144–154

    Article  CAS  Google Scholar 

  42. De Meyer T, Sinnaeve D, Van Gasse B, Rietzschel ER, De Buyzere ML, Langlois MR, Bekaert S, Martins JC, Van Criekinge W (2010) Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra. Anal Bioanal Chem 398:1781–1790

    Article  CAS  Google Scholar 

  43. Craig A, Cloareo O, Holmes E, Nicholson JK, Lindon JC (2006) Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal Chem 78:2262–2267

    Article  CAS  Google Scholar 

  44. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    Article  CAS  Google Scholar 

  45. Ali K, Maltese F, Toepfer R, Choi YH, Verpoorte R (2011) Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. J Biomol NMR 49:255–266

    Article  CAS  Google Scholar 

  46. Kaiser KA, Barding GA, Larive CK (2009) A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana. Magn Reson Chem 47:S147–S156

    Article  CAS  Google Scholar 

  47. Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196

    Article  CAS  Google Scholar 

  48. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572

    Google Scholar 

  49. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128

    Article  CAS  Google Scholar 

  50. Trygg J (2002) O2-PLS for qualitative and quantitative analysis in multivariate calibration. J Chemom 16:283–293

    Article  CAS  Google Scholar 

  51. Trygg J, Wold S (2003) O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. J Chemom 17:53–64

    Article  CAS  Google Scholar 

  52. Defernez M, Kemsley EK (1997) The use and misuse of chemometrics for treating classification problems. TrAC Trends Anal Chem 16:216–221

    Article  Google Scholar 

  53. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479

    Article  CAS  Google Scholar 

  54. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4:81–89

    Article  CAS  Google Scholar 

  55. Cloarec O, Dumas ME, Craig A, Barton RH, Trygg J, Hudson J, Blancher C, Gauguier D, Lindon JC, Holmes E, Nicholson J (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem 77:1282–1289

    Article  CAS  Google Scholar 

  56. Blaise BJ, Navratil V, Domange C, Shintu L, Dumas ME, Elena-Herrmann B, Emsley L, Toulhoat P (2010) Two-dimensional statistical recoupling for the identification of perturbed metabolic networks from NMR spectroscopy. J Proteome Res 9:4513–4520

    Article  CAS  Google Scholar 

  57. Fonville JM, Maher AD, Coen M, Holmes E, Lindon JC, Nicholson JK (2010) Evaluation of full-resolution J-resolved 1H NMR projections of biofluids for metabonomics information retrieval and biomarker identification. Anal Chem 82:1811–1821

    Article  CAS  Google Scholar 

  58. Sands CJ, Coen M, Maher AD, Ebbels TMD, Holmes E, Lindon JC, Nicholson JK (2009) Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids: application to drug metabolite profile identification and enhanced information recovery. Anal Chem 81:6458–6466

    Article  CAS  Google Scholar 

  59. Kim JD, Kaiser K, Larive CK, Borkovich KA (2011) Use of 1H nuclear magnetic resonance to measure intracellular metabolite levels during growth and asexual sporulation in Neurospora crassa. Eukaryot Cell 10:820–831

    Article  CAS  Google Scholar 

  60. Brown FF, Campbell ID, Kuchel PW, Rabenstein DC (1977) Human erythrocyte metabolism studies by 1H spin-echo NMR. FEBS Lett 82:12–16

    Article  CAS  Google Scholar 

  61. Ebikeme C, Hubert J, Biran M, Gouspillou G, Morand P, Plazolles N, Guegan F, Diolez P, Franconi JM, Portais JC, Bringaud F (2010) Ablation of succinate production from glucose metabolism in the procyclic trypanosomes induces metabolic switches to the glycerol 3-phosphate/dihydroxyacetone phosphate shuttle and to proline metabolism. J Biol Chem 285:32312–32324

    Article  CAS  Google Scholar 

  62. Flores-Valverde AM, Horwood J, Hill EM (2010) Disruption of the steroid metabolome in fish caused by exposure to the environmental estrogen 17 alpha-ethinylestradiol. Environ Sci Technol 44:3552–3558

    Article  CAS  Google Scholar 

  63. Yap IKS, Brown IJ, Chan Q, Wijeyesekera A, Garcia-Perez I, Bictash M, Loo RL, Chadeau-Hyam M, Ebbeis T, De Iorio M, Maibaum E, Zhao LC, Kesteloot H, Daviglus ML, Stamler J, Nicholson JK, Elliott P, Holmes E (2010) Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease INTERMAP study. J Proteome Res 9:6647–6654

    Article  CAS  Google Scholar 

  64. Spraul M, Schutz B, Rinke P, Koswig S, Humpfer E, Schafer H, Mortter M, Fang F, Marx UC, Minoja A (2009) NMR-based multi parametric quality control of fruit juices: SGF Profiling. Nutrients 1:148–155

    Article  CAS  Google Scholar 

  65. Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224

    Article  CAS  Google Scholar 

  66. Lee DY, Fiehn O (2008) High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 4:13

    Article  CAS  Google Scholar 

  67. Do NM, Olivier MA, Salisbury JJ, Wager CB (2011) Application of quantitative (19)F and (1)H NMR for reaction monitoring and in situ yield determinations for an early stage pharmaceutical candidate. Anal Chem 83:8766–8771

    Article  CAS  Google Scholar 

  68. Kichik N, Tarrago T, Giralt E (2010) Simultaneous (19)F NMR screening of prolyl oligopeptidase and dipeptidyl peptidase IV inhibitors. ChemBioChem 11:1115–1119

    Article  CAS  Google Scholar 

  69. Reid DG, Murphy PS (2008) Hydrophobicity predicts in vivo 19F magnetic resonance detectability of fluorinated psychiatric drugs: simple test for likely success in clinical pharmacokinetic studies. Drug Dev Res 69:279–283

    Article  CAS  Google Scholar 

  70. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45:490–511

    Article  CAS  Google Scholar 

  71. Lane AN, Fan TWM, Xie Z, Moseley HNB, Higashi RM (2009) Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal Chim Acta 651:201–208

    Article  CAS  Google Scholar 

  72. Yu TY, Singh M, Matsuoka S, Patti GJ, Potter GS, Schaefer J (2010) Variability in C-3-plant cell-Wall biosynthesis in a high-CO2 atmosphere by solid-state NMR spectroscopy. J Am Chem Soc 132:6335–6341

    Article  CAS  Google Scholar 

  73. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163

    Article  CAS  Google Scholar 

  74. Lerche MH, Meier S, Jensen PR, Hustvedt SO, Karlsson M, Duus JO, Ardenkjaer-Larsen JH (2011) Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism. NMR Biomed 24:96–103

    Article  CAS  Google Scholar 

  75. Meier S, Jensen PR, Duus JO (2011) Real-time detection of central carbon metabolism in living Escherichia coli and its response to perturbations. FEBS Lett 585:3133–3138

    Article  CAS  Google Scholar 

  76. Shanaiah N, Desilva MA, Gowda GAN, Raftery MA, Hainline BE, Raftery D (2007) Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proc Natl Acad Sci U S A 104:11540–11544

    Article  CAS  Google Scholar 

  77. Ye T, Mo HP, Shanaiah N, Gowda GAN, Zhang SC, Raftery D (2009) Chemoselective 15N tag for sensitive and high-resolution nuclear magnetic resonance profiling of the carboxyl-containing metabolome. Anal Chem 81:4882–4888

    Article  CAS  Google Scholar 

  78. Beckonert O, Keun HC, Ebbels TMD, Bundy JG, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703

    Article  CAS  Google Scholar 

  79. Maher AD, Zirah SFM, Holmes E, Nicholson JK (2007) Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem 79:5204–5211

    Article  CAS  Google Scholar 

  80. Martineau E, Tea I, Loaec G, Giraudeau P, Akoka S (2011) Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem 401:2133–2142

    Article  CAS  Google Scholar 

  81. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  82. Srivastava AK, Srivastava S, Penna S, D’Souza SF (2011) Thiourea orchestrates regulation of redox state and antioxidant responses to reduce the NaCl-induced oxidative damage in Indian mustard (Brassica juncea (L.) Czern.). Plant Physiol Biochem 49:676–686

    Article  CAS  Google Scholar 

  83. Khandelwal P, Beyer CE, Lin Q, Schechter LE, Bach AC (2004) Studying rat brain neurochemistry using nanoprobe NMR spectroscopy: a metabonomics approach. Anal Chem 76:4123–4127

    Article  CAS  Google Scholar 

  84. Price KE, Lunte CE, Larive CK (2008) Development of tissue-targeted metabonomics. Part 1. Analytical considerations. J Pharm Biomed Anal 46:737–747

    Article  CAS  Google Scholar 

  85. Price KE, Larive CK, Lunte CE (2009) Tissue-targeted metabonomics: biological considerations and application to doxorubicin-induced hepatic oxidative stress. Metabolomics 5:219–228

    Article  CAS  Google Scholar 

  86. Righi V, Roda JM, Paz J, Mucci A, Tugnoli V, Rodriguez-Tarduchy G, Barrios L, Schenetti L, Cerdan S, Garcia-Martin ML (2009) (1)H HR-MAS and genomic analysis of human tumor biopsies discriminate between high and low grade astrocytomas. NMR Biomed 22:629–637

    Article  CAS  Google Scholar 

  87. Bathen TF, Sitter B, Sjobakk TE, Tessem M-B, Gribbestad IS (2010) Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res 70:6692–6696

    Article  CAS  Google Scholar 

  88. Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A, Kim H, Park S, Moon WK (2011) An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS One 6:e25563

    Google Scholar 

  89. Somashekar BS, Kamarajan P, Danciu T, Kapila YL, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A (2011) Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J Proteome Res 10:5232–5241

    Article  CAS  Google Scholar 

  90. Beckonert O, Coen M, Keun HC, Wang YL, Ebbels TMD, Holmes E, Lindon JC, Nicholson JK (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    Article  CAS  Google Scholar 

  91. Lucas LH, Wilson SF, Lunte CE, Larive CK (2005) Concentration profiling in rat tissue by high-resolution magic-angle spinning NMR spectroscopy: investigation of a model drug. Anal Chem 77:2978–2984

    Article  CAS  Google Scholar 

  92. Moestue S, Sitter B, Bathen TF, Tessem M-B, Gribbestad IS (2011) HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem 11:2–26

    Article  CAS  Google Scholar 

  93. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675

    Article  CAS  Google Scholar 

  94. Beni S, Limtiaco JFK, Larive CK (2011) Analysis and characterization of heparin impurities. Anal Bioanal Chem 399:527–539

    Article  CAS  Google Scholar 

  95. Zang Q, Keire DA, Wood RD, Buhse LF, Moore CMV, Nasr M, Al-Hakim A, Trehy ML, Welsh WJ (2011) Class modeling analysis of heparin (1)H NMR spectral data using the soft independent modeling of class analogy and unequal class modeling techniques. Anal Chem 83:1030–1039

    Article  CAS  Google Scholar 

  96. Rudd TR, Gaudesi D, Lima MA, Skidmore MA, Mulloy B, Torri G, Nader HB, Guerrini M, Yates EA (2011) High-sensitivity visualisation of contaminants in heparin samples by spectral filtering of (1)H NMR spectra. Analyst 136:1390–1398

    Article  CAS  Google Scholar 

  97. Zartler ER, Martin GE (2011) The use of (1)H-(31)P GHMBC and covariance NMR to unambiguously determine phosphate ester linkages in complex polysaccharide mixtures. J Biomol NMR 51:357–367

    Article  CAS  Google Scholar 

  98. Apicella MA, Post DMB, Fowler AC, Jones BD, Rasmussen JA, Hunt JR, Imagawa S, Choudhury B, Inzana TJ, Maier TM, Frank DW, Zahrt TC, Chaloner K, Jennings MP, McLendon MK, Gibson BW (2010) Identification, characterization and immunogenicity of an O-antigen capsular polysaccharide of Francisella tularensis. PLoS One 5:e11060

    Google Scholar 

  99. Aich U, Beckley N, Shriver Z, Raman R, Viswanathan K, Hobbie S, Sasisekharan R (2011) Glycomics-based analysis of chicken red blood cells provides insight into the selectivity of the viral agglutination assay. FEBS J 278:1699–1712

    Article  CAS  Google Scholar 

  100. Aubin Y, Jones C, Freedberg DI (2010) Using NMR spectroscopy to obtain the higher order structure of biopharmaceutical products. Biopharm Int Aug:28–34

  101. Bermudez A, Reyes C, Guzman F, Vanegas M, Rosas J, Amador R, Rodriguez R, Patarroyo MA, Patarroyo ME (2007) Synthetic vaccine update: applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine 25:4487–4501

    Article  CAS  Google Scholar 

  102. Latypov RF, Hogan S, Lau H, Gadgil H, Liu D (2012) Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc. J Biol Chem 287:1381–1396

    Article  CAS  Google Scholar 

  103. Olejniczak ET, Ruan Q, Ziemann RN, Birkenmeyer LG, Saldana SC, Tetin SY (2010) Rapid determination of antigenic epitopes in human NGAL using NMR. Biopolymers 93:657–667

    Article  CAS  Google Scholar 

  104. Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149

    Article  CAS  Google Scholar 

  105. Robinette SL, Brueschweiler R, Schroeder FC, Edison AS (2012) NMR in metabolomics and natural products research: two sides of the same coin. Acc Chem Res 45:288–297

    Article  CAS  Google Scholar 

  106. Napolitano JG, Godecke T, Rodriguez-Brasco MF, Jaki BU, Chen S-N, Lankin DC, Pauli GF (2012) The tandem of full spin analysis and qHNMR for the quality control of botanicals exemplified with Ginkgo biloba. J Nat Prod 75:238–248

    Article  CAS  Google Scholar 

  107. Beretta G, Caneva E, Regazzoni L, Bakhtyari NG, Facino RM (2008) A solid-phase extraction procedure coupled to 1H NMR, with chemometric analysis, to seek reliable markers of the botanical origin of honey. Anal Chim Acta 620:176–182

    Article  CAS  Google Scholar 

  108. Frydman L, Scherf T, Lupulescu A (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci U S A 99:15858–15862

    Article  CAS  Google Scholar 

  109. Pathan M, Akoka S, Tea I, Charrier B, Giraudeau P (2011) “Multi-scan single shot” quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR. Analyst 136:3157–3163

    Article  CAS  Google Scholar 

  110. Peck TL, Magin RL, Lauterbur PC (1995) Design and analysis of microcoils for NMR microscopy. J Magn Reson Ser B 108:114–124

    Article  CAS  Google Scholar 

  111. Demas V, Herberg JL, Malba V, Bernhardt A, Evans L, Harvey C, Chinn SC, Maxwell RS, Reimer J (2007) Portable, low-cost NMR with laser-lathe lithography produced microcoils. J Magn Reson 189:121–129

    Article  CAS  Google Scholar 

  112. Diekmann J, Adams KL, Klunder GL, Evans L, Steele P, Vogt C, Herberg JL (2011) Portable microcoil NMR detection coupled to capillary electrophoresis. Anal Chem 83:1328–1335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

CKL greatfully acknowledges National Science Foundation grants CHE-0848976 which funds improvements to NMR sensitivity and its coupling with electrophoretic separations, and IOS-1121626 which funds metabolomics and metabolic profiling experiments in plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia K. Larive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barding, G.A., Salditos, R. & Larive, C.K. Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem 404, 1165–1179 (2012). https://doi.org/10.1007/s00216-012-6188-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6188-z

Keywords

Navigation