Skip to main content

Advertisement

Log in

Recent Progress in Understanding the Mechanism of P-Glycoprotein-mediated Drug Efflux

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

M6M,:

1,6-hexanediyl bismethanethiosulfonate;

M8M,:

3,6-dioxaoctane-1,8-diyl bismethanethiosulfonate;

NBD1,:

amino-terminal nucleotide binding domain;

NBD2,:

carboxy-terminal nucleotide binding domain;

P-gp,:

P-glycoprotein;

TMD,:

transmembrane domain;

TM,:

transmembrane

References

  • Al-Shawi M.K., Polar M.K., Omote H., Figler R.A. 2003. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. J. Biol. Chem. 278:52629–52640

    Article  CAS  PubMed  Google Scholar 

  • al-Shawi M.K., Senior A.E. 1993. Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J. Biol. Chem. 268:4197–4206

    CAS  PubMed  Google Scholar 

  • Alien J.D., Brinkhuis R.F., Wijnholds J., Schinkel A.H. 1999. The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res. 59:4237–4241

    Google Scholar 

  • Allikmets R., Schriml L.M., Hutchinson A., Romano-Spica V., Dean M. 1998. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58:5337–5339

    CAS  PubMed  Google Scholar 

  • Ambudkar S.V., Kimchi-Sarfaty C., Sauna Z.E., Gottesman M.M. 2003. P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485

    Article  CAS  PubMed  Google Scholar 

  • Ambudkar S.V., Lelong I.H., Zhang J., Cardarelli C.O., Gottesman M.M., Pastan. 1992. Partial purification and reconstitution of the human multidrug- resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc. Natl. Acad. Sci. USA 89:8472–8476

    CAS  PubMed  Google Scholar 

  • Biedler J.L., Riehm H. 1970. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res. 30:1174–1184

    CAS  PubMed  Google Scholar 

  • Borges-Walmsley M.I., McKeegan K.S., Walmsley A.R. 2003. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376:313–338

    Article  CAS  PubMed  Google Scholar 

  • Bruggemann E.P., Currier S.J., Gottesman M.M., Pastan I. 1992. Characterization of the azidopine and vinblastine binding site of P-glycoprotein. J. Biol. Chem. 267:21020–21026

    CAS  PubMed  Google Scholar 

  • Chang G. 2003. Structure of MsbA from Vibrio cholera: A Multidrug Resistance ABC transporter Homolog in a Closed Conformation. J. Mol. Biol. 330:419–430

    Article  CAS  PubMed  Google Scholar 

  • Chang G., Roth C.B. 2001. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793–1800

    Article  PubMed  Google Scholar 

  • Chen C.J., Chin J.E., Ueda K., Clark D.P., Pastan I., Gottesman M.M., Roninson I.B. 1986. Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389

    CAS  PubMed  Google Scholar 

  • Chen J.H., Chang X.B., Aleksandrov A.A., Riordan J.R. 2002. CFTR is a monomer: biochemical and functional evidence. J. Membrane Biol. 188:55–71

    Article  CAS  Google Scholar 

  • Choi K.H., Chen C.J., Kriegler M., Roninson I.B. 1988. An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene. Cell 53:519–529

    Article  CAS  PubMed  Google Scholar 

  • Dano K. 1972. Cross resistance between vinca alkaloids and anthracyclines in Ehrlich ascites tumor in vivo. Cancer Chemother. Rep. 56:701–708

    CAS  PubMed  Google Scholar 

  • Dean M., Rzhetsky A., Allikmets R. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11:1156–1166

    CAS  PubMed  Google Scholar 

  • Dearden J.C., A1-Noobi A., Scott A.C., Thomson S.A. 2003. QSAR studies on P-glycoprotein-regulated multidrug resistance and on its reversal by phenothiazines. SAR QSAR Environ. Res. 14:447–454

    CAS  PubMed  Google Scholar 

  • Demeule M., Laplante A., Murphy G.F., Wenger R.M., Beliveau R. 1998. Identification of the cyclosporin-binding site in P-glycoprotein. Biochemistry 37:18110–18118

    Article  CAS  PubMed  Google Scholar 

  • Demmer A., Thole H., Kubesch P., Brandt T., Raida M., Fislage R., Tummler B. 1997. Localization of the iodomycin binding site in hamster P-glycoprotein. J. Biol. Chem. 272:20913–20919

    Article  CAS  PubMed  Google Scholar 

  • Dey S., Ramachandra M., Pastan I., Gottesman M.M., Ambudkar S.V. 1997. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc. Natl. Acad. Sci. USA 94:10594–10599

    Article  CAS  PubMed  Google Scholar 

  • Doige C.A., Yu X., Sharom F.J. 1992. ATPase activity of partially purified P-glycoprotein from multidrug- resistant Chinese hamster ovary cells. Biochim. Biophys. Acta. 1109:149–160

    CAS  PubMed  Google Scholar 

  • Dong J., Yang G., McHaourab H.S. 2005. Structural basis of energy transduction in the transport cycle of MsbA. Science 308:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Doyle L.A., Yang W., Abruzzo L.V., Krogmann T., Gao Y., Rishi A.K., Ross D.D. 1998. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 95:15665–15670

    Article  CAS  PubMed  Google Scholar 

  • Druley T.E., Stein W.D., Roninson I.B. 2001. Analysis of mdr1 p-glycoprotein conformational changes in permeabilized cells using differential immunoreactivity. Biochemistry 40:4312–4322

    CAS  PubMed  Google Scholar 

  • Eckford P.D., Sharom F.J. 2005. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem. J. 389: 517–526

    CAS  PubMed  Google Scholar 

  • Ekins S., Kim R.B., Leake B.F., Dantzig A.H., Schuetz E.G., Lan L.B., Yasuda K., Shepard R.L., Winter M.A., Schuetz J.D., Wikel J.H., Wrighton S.A. 2002. Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol. Pharmacol. 61:974–981

    CAS  PubMed  Google Scholar 

  • Garrigues A., Loiseau N., Delaforge M., Ferte J., Garrigos M., Andre F., Orlowski S. 2002. Characterization of two pharmacophores on the multidrug transporter P-glycoprotein. Mol. Pharmacol. 62:1288–1298

    Article  CAS  PubMed  Google Scholar 

  • Gerlach J.H., Endicott J.A., Juranka P.F., Henderson G., Sarangi F., Deuchars K.L., Ling V. 1986. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature 324:485–489

    Article  CAS  PubMed  Google Scholar 

  • Gottesman M.M., Pastan I. 1988. The multidrug transporter, a double-edged sword. J. Biol. Chem. 263:12163–12166

    CAS  PubMed  Google Scholar 

  • Gottesman M.M., Pastan I. 1993. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62:385–427

    Article  CAS  PubMed  Google Scholar 

  • Graf G.A., Yu L., Li W.P., Gerard R., Tuma P.L., Cohen J.C., Hobbs H.H. 2003. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278:48275–48282

    Article  CAS  PubMed  Google Scholar 

  • Greenberger L.M. 1993. Major photoaffinity drug labeling sites for iodoaryl azidoprazosin in P- glycoprotein are within, or immediately C-terminal to, transmembrane domains 6 and 12. J. Biol. Chem. 268:11417–11425

    CAS  PubMed  Google Scholar 

  • Gros P., Ben Neriah Y.B., Croop J.M., Housman D.E. 1986. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature 323:728–731

    Article  CAS  PubMed  Google Scholar 

  • Heldwein E.E., Brennan R.G. 2001. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378–82

    Article  CAS  PubMed  Google Scholar 

  • Higgins C.F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67–113

    Article  CAS  PubMed  Google Scholar 

  • Higgins C.F., Gottesman M.M. 1992. Is the multidrug transporter a flippase? Trends. Biochem. Sci. 17:18–21

    CAS  Google Scholar 

  • Homolya L., Hollo Z., Germann U.A., Pastan I., Gottesman M.M., Sarkadi B. 1993. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 268:21493–21496

    CAS  PubMed  Google Scholar 

  • Hopfner K.P., Karcher A., Shin D.S., Craig L., Arthur L.M., Carney J.P., Tainer J.A. 2000. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800

    Article  CAS  PubMed  Google Scholar 

  • Hrycyna C.A. 2001. Molecular genetic analysis and biochemical characterization of mammalian P-glycoproteins involved in multidrug resistance. Semin. Cell Dev. Biol. 12:247–256

    Article  CAS  PubMed  Google Scholar 

  • Hrycyna C.A., Ramachandra M., Ambudkar S.V., Ko Y.H., Pedersen P.L., Pastan I., Gottesman M.M. 1998. Mechanism of action of human P-glycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites. J. Biol. Chem. 273:16631–16634

    Article  CAS  PubMed  Google Scholar 

  • Hrycyna C.A., Ramachandra M., Germann U.A., Cheng P.W., Pastan I., Gottesman M.M. 1999. Both ATP sites of human P-glycoprotein are essential but not symmetric. Biochemistry 38:13887–13899

    Article  CAS  PubMed  Google Scholar 

  • Janas E., Hofacker M., Chen M., Gompf S., van der Does C., Tampe R. 2003. The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATP-binding cassette transporter Mdllp. J. Biol. Chem. 278:26862–26869

    Article  CAS  PubMed  Google Scholar 

  • Juliano R.L., Ling V. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–162

    CAS  PubMed  Google Scholar 

  • Karpowich N., Martsinkevich O., Millen L., Yuan Y.R., Dai P.L., MacVey K., Thomas P.J., Hunt J.F. 2001. Crystal structures of the MJ1267 ATP binding cassette reveal an induced- fit effect at the ATPase active site of an ABC transporter. Structure (Camb) 9:571–586

    CAS  Google Scholar 

  • Kast C., Canfield V., Levenson R., Gros P. 1996. Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence. J. Biol. Chem. 271:9240–9248

    CAS  PubMed  Google Scholar 

  • Lee C.G., Gottesman M.M., Cardarelli C.O., Ramachandra M., Jeang K.T., Ambudkar S.V., Pastan I., Dey S. 1998. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601

    CAS  PubMed  Google Scholar 

  • Lee J.Y., Urbatsch I.L., Senior A.E., Wilkens S. 2002. Projection structure of P-glycoprotein by electron microscopy. Evidence for a closed conformation of the nucleotide binding domains. J. Biol. Chem. 271:40125–40131

    Google Scholar 

  • Leith C.P., Kopecky K.J., Chen I.M., Eijdems L., Slovak M.L., McConnell T.S., Head D.R., Weick J., Grever M.R., Appelbaum F.R., Willman C.L. 1999. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 94:1086–1099

    CAS  PubMed  Google Scholar 

  • Ling V., Thompson L.H. 1974. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell Physiol. 83:103–116

    Article  CAS  PubMed  Google Scholar 

  • Locher K.P., Lee A.T., Rees D.C. 2002. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2002. The “LSGGQ” motif in each nucleotide-binding domain of human P-glycoprotein is adjacent to the opposing walker A sequence. J. Biol. Chem. 277:41303–41306

    CAS  PubMed  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2003a. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains. J. Biol. Chem. 278:1575–1578

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2003b. Methanethiosulfonate derivatives of rhodamine and verapamil activate human P-glycoprotein at different sites. J. Biol. Chem. 278:50136–50141

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2003c. Permanent activation of the human p-glycoprotein by covalent modification of a residue in the drug-binding site. J. Biol. Chem. 278:20449–20452

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2003d. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. J. Biol. Chem. 278:39706–39710

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2003e. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit Mechanism for drug binding. J. Biol. Chem. 278:13603–13606

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2004a. Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane. J. Biol. Chem. 279:7692–7697

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2004b. The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Biochemistry 43:12081–12089

    Article  CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2004c. Residues V133 and C137 in transmembrane segment 2 are close to residues A935 and G939 in transmembrane segment 11 of human P-glycoprotein. J. Biol. Chem. 279:18232–18238

    CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2004d. Thapsigargin or curcumin does not promote maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochem. Biophys. Res. Commun. 325:580–585

    Article  CAS  Google Scholar 

  • Loo T.W., Bartlett M.C., Clarke D.M. 2005. ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Biochemistry 44:10250–10258

    Article  CAS  PubMed  Google Scholar 

  • Loo T.W., Clarke D.M. 1993a. Functional consequences of phenylalanine mutations in the predicted transmembrane domain of P-glycoprotein. J. Biol. Chem. 268:19965–19972

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1993b. Functional consequences of proline mutations in the predicted transmembrane domain of P-glycoprotein. J. Biol. Chem. 268:3143–3149

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1994a. Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J. Biol. Chem. 269:7243–7248

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1994b. Mutations to amino acids located in predicted transmembrane segment 6 (TM6) modulate the activity and substrate specificity of human P-glycoprotein. Biochemistry 33:14049–14057

    Article  CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1994c. Prolonged association of temperature-sensitive mutants of human P- glycoprotein with calnexin during biogenesis. J. Biol. Chem. 269:28683–28689

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1994d. Reconstitution of drug-stimulated ATPase activity following co- expression of each half of human P-glycoprotein as separate polypeptides. J. Biol. Chem. 269:7750–7755

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1995a. Covalent modification of human P-glycoprotein mutants containing a single cysteine in either nucleotide-binding fold abolishes drug- stimulated ATPase activity. J. Biol. Chem. 270:22957–22961

    Article  CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1995b. Membrane topology of a cysteine-less mutant of human P-glycoprotein. J. Biol. Chem. 270:843–848

    Article  CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1996a. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. J. Biol. Chem. 271:27482–27487

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1996b. The minimum functional unit of human P-glycoprotein appears to be a monomer. J. Biol. Chem. 271:27488–27492

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1997a. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators. J. Biol. Chem. 272:709–712

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1997b. Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12. J. Biol. Chem. 272:20986–20989

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1997c. Identification of residues in the drug-binding site of human P- glycoprotein using a thiol-reactive substrate. J. Biol. Chem. 272:31945–31948

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1998. Superfolding of the partially unfolded core-glycosylated intermediate of human P-glycoprotein into the mature enzyme is promoted by substrate- induced transmembrane domain interactions. J. Biol. Chem. 273:14671–14674

    CAS  PubMed  Google Scholar 

  • Loo T.W., Clarke D.M. 1999a. Identification of residues in the drug-binding domain of human P-glycoprotein: Analysis of transmembrane segment 11 by cysteine-scanning mutagenesis and inhibition by dibromobimane. J. Biol. Chem. 274:35388–35392

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 1999b. The transmembrane domains of the human multidrug resistance P- glycoprotein are sufficient to mediate drug binding and trafficking to the cell surface. J. Biol. Chem. 274:24759–24765

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2000a. Drug-stimulated ATPase activity of human P-glycoprotein is blocked by disulfide cross-linking between the nucleotide-binding sites. J. Biol. Chem. 275:19435–19438

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2000b. Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J. Biol. Chem. 275:39272–39278

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2000c. The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis. J. Biol. Chem. 275:5253–5256

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2001a. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, Tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis: Evidence for rotation of a transmembrane helix. J. Biol. Chem. 276:31800–31805

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2001b. Defining the drug-binding site in the human multidrug resistance P- glycoprotein using MTS-verapamil. J. Biol. Chem. 276:14972–14919

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2001c. Determining the dimensions of the drug-binding domain of human P-glycoprotein using thiol cross-linkers as molecular rulers. J. Biol. Chem. 276:36877–36880

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2002a. Location of the rhodamine-binding site in the human multidrug resistance P-glycoprotein. J. Biol. Chem. 277:44332–44338

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2002b. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Proc. Natl. Acad. Sci. USA 99:3511–3516

    CAS  Google Scholar 

  • Loo T.W., Clarke D.M. 2005. Do drug substrates enter the common drug-binding pocket of P-glycoprotein through “gates”? Biochem. Biophys. Res. Commun. 329:419–422

    Article  CAS  PubMed  Google Scholar 

  • Lugo M.R., Sharom F.J. 2005. Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site. Biochemistry 44:643–655

    CAS  PubMed  Google Scholar 

  • Martin C., Walker J., Rothnie A., Callaghan R. 2003. The expression of P-glycoprotein does influence the distribution of novel fluorescent compounds in solid tumour models. Br. J. Cancer 89:1581–1589

    CAS  PubMed  Google Scholar 

  • Mechetner E.B., Schott B., Morse B.S., Stein W.D., Druley T., Davis K.A., Tsuruo T., Roninson I.B. 1997. P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity. Proc.Natl. Acad. Sci. USA 94:12908–12913

    Article  CAS  PubMed  Google Scholar 

  • Miyake K., Mickley L., Litman T., Zhan Z., Robey R., Cristensen B., Brangi M., Greenberger L., Dean M., Fojo T., Bates S.E. 1999. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13

    CAS  PubMed  Google Scholar 

  • Moody I.E., Millen L., Binns D., Hunt J.F., Thomas P.J. 2002. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem. 277:21111–21114

    Article  CAS  PubMed  Google Scholar 

  • Murakami S., Nakashima R., Yamashita E., Yamaguchi A. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  CAS  PubMed  Google Scholar 

  • Omote H., Al-Shawi M.K. 2002. A novel electron paramagnetic resonance approach to determine the mechanism of drug transport by P-glycoprotein. J. Biol. Chem. 277:45688–45694

    Article  CAS  PubMed  Google Scholar 

  • Omote H., Figler R.A., Polar M.K., Al-Shawi M.K. 2004. Improved energy coupling of human P-glycoprotein by the glycine 185 to valine mutation. Biochemistry 43:3917–3928

    Article  CAS  PubMed  Google Scholar 

  • Pascaud C., Garrigos M., Orlowski S. 1998. Multidrug resistance transporter P- glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. Biochem. J. 333:351–8

    CAS  PubMed  Google Scholar 

  • Penzotti J.E., Lamb M.L., Evensen E., Grootenhuis P.D. 2002. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J. Med. Chem. 45:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Pleban K., Kopp S., Csaszar E., Peer M., Hrebicek T., Rizzi A., Ecker G.F., Chiba P. 2005. P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Mol. Pharmacol. 67:365–374

    CAS  PubMed  Google Scholar 

  • Poruchynsky M.S., Ling V. 1994. Detection of oligomeric and monomeric forms of P-glycoprotein in multidrug resistant cells. Biochemistry 33:4163–4174

    CAS  PubMed  Google Scholar 

  • Qu Q., Chu J.W., Sharom F.J. 2003. Transition state P-glycoprotein binds drugs and modulators with unchanged affinity, suggesting a concerted transport mechanism. Biochemistry 42:1345–1353

    CAS  PubMed  Google Scholar 

  • Qu Q., Sharom F.J. 2001. FRET analysis indicates that the two ATPase active sites of the P- glycoprotein multidrug transporter are closely associated. Biochemistry 40:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Qu Q., Sharom F.J. 2002. Proximity of bound Hoechst 33342 to the ATPase catalytic sites places the drug binding site of P-glycoprotein within the cytoplasmic membrane leaflet. Biochemistry 41:4744–4752

    Article  CAS  PubMed  Google Scholar 

  • Ramachandra M., Ambudkar S.V., Chen D., Hrycyna C.A., Dey S., Gottesman M.M., Pastan I. 1998. Human P-glycoprotein exhibits reduced affinity for substrates during a catalytic transition state. Biochemistry 37:5010–5019

    Article  CAS  PubMed  Google Scholar 

  • Ramjeesingh M., Li C., Kogan I., Wang Y., Huan L.J., Bear C.E. 2001. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator. Biochemistry 40:10700–10706

    Article  CAS  PubMed  Google Scholar 

  • Raviv Y., Pollard H.B., Bruggemann E.P., Pastan I., Gottesman M.M. 1990. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J. Biol. Chem. 265:3975–3980

    CAS  PubMed  Google Scholar 

  • Reyes C.L., Chang G. 2005. Structure of the ABC transporter MsbA in complex with ADP-vanadate and lipopolysaccharide. Science 308:1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Riordan J.R., Ling V. 1985. Genetic and biochemical characterization of multidrug resistance. Pharmacol. Ther. 28:51–75

    Article  CAS  PubMed  Google Scholar 

  • Romsicki Y., Sharom F.J. 2001. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry 40:6937–6947

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M.F., Callaghan R., Ford R.C., Higgins C.F. 1997. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J. Biol. Chem. 272:10685–10694

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M.F., Callaghan R., Modok S., Higgins C.F., Ford R.C. 2005. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J. Biol. Chem. 280:2857–2862

    CAS  PubMed  Google Scholar 

  • Rosenberg M.F., Kamis A.B., Callaghan R., Higgins C.F., Ford R.C. 2003. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J. Biol. Chem. 278:8294–8299

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M.F., Velarde G., Ford R.C., Martin C., Berridge G., Kerr I.D., Callaghan R., Schmidlin A., Wooding C., Linton K.J., Higgins C.F. 2001. Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J. 20:5615–5625

    Article  CAS  PubMed  Google Scholar 

  • Rothnie A., Storm J., Campbell J., Linton K.J., Kerr I.D., Callaghan R. 2004. The topography of transmembrane segment six is altered during the catalytic cycle of P-glycoprotein. J. Biol. Chem. 279:34913–34921

    Article  CAS  PubMed  Google Scholar 

  • Sarkadi B., Price E.M., Boucher R.C., Germann U.A., Scarborough G.A. 1992. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J. Biol. Chem. 267:4854–4858

    CAS  PubMed  Google Scholar 

  • Sauna Z.E., Ambudkar S.V. 2000. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc. Natl. Acad. Sci. USA 97:2515–2520

    Article  CAS  PubMed  Google Scholar 

  • Sauna Z.E., Andrus M.B., Turner T.M., Ambudkar S.V. 2004. Biochemical basis of polyvalency as a strategy for enhancing the efficacy of P-glycoprotein (ABCB1) modulators: stipiamide homodimers separated with defined-length spacers reverse drug efflux with greater efficacy. Biochemistry 43:2262–2271

    Article  CAS  PubMed  Google Scholar 

  • Sauna Z.E., Muller M., Peng X.H., Ambudkar S.V. 2002. Importance of the conserved Walker B glutamate residues, 556 and 1201, for the completion of the catalytic cycle of ATP hydrolysis by human P-glycoprotein (ABCB1). Biochemistry 41:13989–4000

    Article  CAS  PubMed  Google Scholar 

  • Schinkel A.H., Smit J.J., van Tellingen O., Beijnen J.H., Wagenaar E., van Deemter L., Mol C.A., van der Valk M.A., Robanus-Maandag E.G., te Riele H.P., Berns A.J.M., Borst P. 1994. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  • Schumacher M.A., Miller M.C., Grkovic S., Brown M.H., Skurray R.A., Brennan R.G. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294:2158–2163

    Article  CAS  PubMed  Google Scholar 

  • Schwab M., Eichelbaum M., Fromm M.F. 2003. Genetic polymorphisms of the human MDR1 drug transporter. Annu. Rev. Pharmacol. Toxicol. 43:285–307

    Article  CAS  PubMed  Google Scholar 

  • See Y.P., Carlsen S.A., Till J.E., Ling V. 1974. Increased drug permeability in Chinese hamster ovary cells in the presence of cyanide. Biochim. Biophys. Acta 373:242–252

    CAS  PubMed  Google Scholar 

  • Seelig A. 1998. A general pattern for substrate recognition by P-glycoprotein. Eur. J. Biochem. 251:252–261

    Article  CAS  PubMed  Google Scholar 

  • Senior A.E., al-Shawi M.K., Urbatsch I.L. 1995. The catalytic cycle of P-glycoprotein. FEBS Lett. 377:285–289

    Article  CAS  PubMed  Google Scholar 

  • Shapiro A.B., Ling V. 1997. Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur. J. Biochem. 250:122–129

    CAS  PubMed  Google Scholar 

  • Sharom F.J. 1997. The P-glycoprotein efflux pump: how does it transport drugs? J. Membrane Biol. 160:161–175

    Article  CAS  Google Scholar 

  • Sharom F.J., Yu X., Doige C.A. 1993. Functional reconstitution of drug transport and ATPase activity in proteoliposomes containing partially purified P-glycoprotein. J. Biol. Chem. 268:24197–24202

    CAS  PubMed  Google Scholar 

  • Shen D.W., Cardarelli C., Hwang J., Corawell M., Richert N., Ishii S., Pastan I., Gottesman M.M. 1986. Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J. Biol. Chem. 261:7762–7770

    CAS  PubMed  Google Scholar 

  • Smith P.C., Karpowich N., Millen L., Moody I.E., Rosen J., Thomas P.J., Hunt J.F. 2002. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell 10:139–149

    Article  CAS  PubMed  Google Scholar 

  • Sonveaux N., Vigano C., Shapiro A.B., Ling V., Ruysschaert J.M. 1999. Ligand-mediated tertiary structure changes of reconstituted P-glycoprotein. A tryptophan fluorescence quenching analysis. J. Biol. Chem. 274:17649–17654

    Article  CAS  PubMed  Google Scholar 

  • Stenham D.R., Campbell J.D., Sansom M.S., Higgins C.F., Kerr I.D., Linton K.J. 2003. An atomic detail model for the human ATP binding cassette transporter P-glycoprotein derived from disulfide cross-linking and homology modeling. FASEB J. 17:2281–2289

    CAS  PubMed  Google Scholar 

  • Tang-Wai D.F., Kajiji S., DiCapua F., de Graaf D., Roninson I.E., Gros P. 1995. Human (MDR1) and mouse (mdr1, mdr3) P-glycoproteins can be distinguished by their respective drug resistance profiles and sensitivity to modulators. Biochemistry 34:32–39

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut F., Tsuruo T., Hamada H., Gottesman M.M., Pastan I., Willingham M.C. 1987. Cellular localization of the multidrug-resistance gene product P- glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735–7738

    CAS  PubMed  Google Scholar 

  • Tombline G., Bartholomew L., Gimi K., Tyndall G.A., Senior A.E. 2004a. Synergy between conserved ABC signature Ser residues in P-glycoprotein catalysis. J. Biol. Chem. 279:5363–5373

    CAS  Google Scholar 

  • Tombline G., Bartholomew L.A., Tyndall G.A., Gimi K., Urbatsch I.L., Senior A.E. 2004b. Properties of P-glycoprotein with mutations in the “catalytic carboxylate” glutamate residues. J. Biol. Chem. 279:46518–46526

    CAS  Google Scholar 

  • Tombline G., Bartholomew L.A., Urbatsch I.L., Senior A.E. 2004c. Combined mutation of catalytic glutamate residues in the two nucleotide binding domains of P-glycoprotein generates a conformation that binds ATP and ADP tightly. J. Biol. Chem 279:31212–31220

    CAS  Google Scholar 

  • Tran T.T., Mittal A., Aldinger T., Polli J.W., Ayrton A., Ellens H., Bentz J. 2005. The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys. J. 88:715–738

    CAS  PubMed  Google Scholar 

  • Urbatsch I.L., al-Shawi M.K., Senior A.E. 1994. Characterization of the ATPase activity of purified Chinese hamster P- glycoprotein. Biochemistry 33:7069–7076

    Article  CAS  PubMed  Google Scholar 

  • Urbatsch I.L., Gimi K., Wilke-Mounts S., Lerner-Marmarosh N., Rousseau M.E., Gros P., Senior A.E. 2001. Cysteines 431 and 1074 are responsible for inhibitory disulfide cross- linking between the two nucleotide-binding sites in human P- glycoprotein. J. Biol. Chem. 276:26980–26987

    Article  CAS  PubMed  Google Scholar 

  • Urbatsch I.L., Sankaran B., Bhagat S., Senior A.E. 1995a. Both P-glycoprotein nucleotide-binding sites are catalytically active. J. Biol. Chem. 270:26956–26961

    CAS  Google Scholar 

  • Urbatsch I.L., Sankaran B., Weber J., Senior A.E. 1995b. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J. Biol. Chem. 270:19383–19390

    CAS  Google Scholar 

  • van der Kolk D.M., de Vries E.G., van Putten W.J., Verdonck L.F., Ossenkoppele G.J., Verhoef G.E., Vellenga E. 2000. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia. Clin. Cancer Res. 6:3205–3214

    CAS  PubMed  Google Scholar 

  • Vigano C., Julien M., Carrier I., Gros P., Ruysschaert J.M. 2002. Structural and functional asymmetry of the nucleotide-binding domains of P-glycoprotein investigated by attenuated total reflection Fourier transform infrared spectroscopy. J. Biol. Chem. 277:5008–5016

    Article  CAS  PubMed  Google Scholar 

  • Wang R.B., Kuo C.L., Lien L.L., Lien E.J. 2003. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. J. Clin. Pharm. Ther. 28:203–228

    Article  CAS  PubMed  Google Scholar 

  • Watkins R.E., Wisely G.B., Moore L.B., Collins J.L., Lambert M.H., Williams S.P., Willson T.M., Kliewer S.A., Redinbo M.R. 2001. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–33

    Article  CAS  PubMed  Google Scholar 

  • Wiese M., Pajeva I.K. 2001. Structure-activity relationships of multidrug resistance reversers. Curr. Med. Chem. 8:685–713

    CAS  PubMed  Google Scholar 

  • Yu E.W., McDermott G., Zgurskaya H.I., Nikaido H., Koshland D.E., Jr. 2003. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300:976–980

    CAS  PubMed  Google Scholar 

  • Yuan Y.R., Blecker S., Martsinkevich O., Millen L., Thomas P.J., Hunt J.F. 2001. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J. Biol. Chem. 276:32313–32321

    CAS  PubMed  Google Scholar 

  • Zhang Z.R., Cui G., Liu X., Song B., Dawson D.C., McCarty N.A. 2005 Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J. Biol. Chem. 280:458–468

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Cancer Institute of Canada through the Canadian Cancer Society and from the Canadian Institutes of Health Research. DMC is the recipient of the Canada Research Chair in Membrane Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.M. Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loo, T., Clarke, D. Recent Progress in Understanding the Mechanism of P-Glycoprotein-mediated Drug Efflux. J Membrane Biol 206, 173–185 (2005). https://doi.org/10.1007/s00232-005-0792-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0792-1

Keywords

Navigation