Skip to main content

Advertisement

Log in

Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Liver imaging is an important clinical area in everyday practice. The clinical meaning of different lesion types in the liver can be quite different. Therefore, the result of imaging studies of the liver can change therapeutic concepts fundamentally. Contrast agents are used in the majority of MR examinations of the liver parenchyma—despite the already good soft-tissue contrast in plain MRI. This can be explained by the advantages in lesion detection and characterization of contrast-enhanced MRI of the liver. Beyond the qualitative evaluation of contrast-enhanced liver MR examinations, quantification of parameters will be the demand of the future. This can be achieved by perfusion MRI, also called dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Its basic principles and different clinical applications will be discussed in this article. Definite cut-off values to determine disease or therapeutic response will help to increase the objectivity and reliability of liver MRI in future. This is especially important in the oncological setting, where modern therapies cannot be assessed based on changes in size only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shellock FG (1999) Safety of MRI contrast agents. JMRI 10:477–484

    Article  PubMed  CAS  Google Scholar 

  2. Oudkerk M, Sijens PE, van Beek EJ, Kuijpers TJ (1995) Safety and efficacy of dotarem (Gd-DOTA) versus magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol 30:75–78

    Article  PubMed  CAS  Google Scholar 

  3. Tombach B, Benner T, Reimer P, et al. (2003) Do highly concentrated gadolinium chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/L gadobutrol. Radiology 226:880–888

    Article  PubMed  Google Scholar 

  4. Chambon C, Clement O, Blanche RL, et al. (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging 11:509–519

    Article  PubMed  CAS  Google Scholar 

  5. Zech CJ, Namkung S, Helmberger T, Reiser MF, Schoenberg SO (2005) Efficacy of ferucarbotran-enhanced early dynamic MR imaging with T1-weighted sequences for characterization of focal liver lesions. Eur Radiol 15(suppl 3):37

    Google Scholar 

  6. Ba-Ssalamah A, Heinz-Peer G, Schima W, et al. (2000) Detection of focal hepatic lesions: comparison of unenhanced and SHU 555 A-enhanced MR imaging versus biphasic helical CTAP. J Magn Reson Imaging 11:665–672

    Article  PubMed  CAS  Google Scholar 

  7. Vogl TJ, Schwarz W, Blume S, et al. (2003) Preoperative evaluation of malignant liver tumors: comparison of unenhanced and SPIO (Resovist)-enhanced MR imaging with biphasic CTAP and intraoperative US. Eur Radiol 13:262–272

    PubMed  Google Scholar 

  8. Ward J, Guthrie JA, Scott DJ, et al. (2000) Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology 216:154–162

    PubMed  CAS  Google Scholar 

  9. Namkung S, Zech CJ, Helmberger T, Reiser MF, Schoenberg SO (2007) Superparamagnetic iron oxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging 25:755–765

    Article  PubMed  Google Scholar 

  10. Zech CJ, Herrmann KA, Huber A, et al. (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450

    Article  PubMed  Google Scholar 

  11. Huppertz A, Balzer T, Blakeborough A, et al. (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275

    Article  PubMed  Google Scholar 

  12. Petersein J, Spinazzi A, Giovagnoni A, et al. (2000) Focal liver lesions: evaluation of the efficacy of gadobenate dimeglumine in MR imaging—a multicenter phase III clinical study. Radiology 215:727–736

    PubMed  CAS  Google Scholar 

  13. Huppertz A, Haraida S, Kraus A, et al. (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology 234:468–478

    Article  PubMed  Google Scholar 

  14. Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO (2008) Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Invest Radiol 43:504–511

    Article  PubMed  Google Scholar 

  15. Malone D, Zech CJ, Ayuso C, et al. (2008) Magnetic resonance imaging of the liver: consensus statement from the 1st International Primovist User Meeting. Eur Radiol 18(Suppl 4):849–864

    Google Scholar 

  16. Zech CJ, Vos B, Nordell A, et al. (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44:305–310

    Article  PubMed  CAS  Google Scholar 

  17. Bartolozzi C, Donati F, Cioni D, et al. (2004) Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol 14:14–20

    Article  PubMed  Google Scholar 

  18. Gehl HB, Bourne M, Grazioli L, Moller A, Lodemann KP (2001) Off-site evaluation of liver lesion detection by Gd-BOPTA-enhanced MR imaging. Eur Radiol 11:187–192

    Article  PubMed  CAS  Google Scholar 

  19. Kim YK, Lee JM, Kim CS, et al. (2005) Detection of liver metastases: gadobenate dimeglumine-enhanced three-dimensional dynamic phases and one-hour delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur Radiol 15:220–228

    Article  PubMed  Google Scholar 

  20. Grazioli L, Morana G, Federle MP, et al. (2001) Focal nodular hyperplasia: morphologic and functional information from MR imaging with gadobenate dimeglumine. Radiology 221:731–739

    Article  PubMed  CAS  Google Scholar 

  21. Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177

    Article  PubMed  Google Scholar 

  22. Zech CJ, Herrmann KA, Reiser MF, Schoenberg SO (2007) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent Gd-EOB-DTPA. Magn Reson Med Sci 6:43–52

    Article  PubMed  Google Scholar 

  23. Del Frate C, Bazzocchi M, Mortele KJ, et al. (2002) Detection of liver metastases: comparison of gadobenate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations. Radiology 225:766–772

    Article  PubMed  Google Scholar 

  24. Burrel M, Llovet JM, Ayuso C, et al. (2003) MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 38:1034–1042

    PubMed  Google Scholar 

  25. Lauenstein TC, Salman K, Morreira R, et al. (2007) Gadolinium-enhanced MRI for tumor surveillance before liver transplantation: center-based experience. AJR Am J Roentgenol 189:663–670

    Article  PubMed  Google Scholar 

  26. Bruix J, Sherman M, Practice Guidelines Committee, American Association for the Study of Liver Diseases (2005) Management of hepatocellular carcinoma. Hepatology 42:1208–1236

    Article  PubMed  Google Scholar 

  27. Zech CJ, Reiser MF, Herrmann KA (2009) Imaging of hepatocellular carcinoma by computed tomography and magnetic resonance imaging: state of the art. Dig Dis 27:114–124

    Article  PubMed  Google Scholar 

  28. Bhartia B, Ward J, Guthrie JA, Robinson PJ (2003) Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR 180:577–584

    PubMed  Google Scholar 

  29. Imai Y, Murakami T, Yoshida S, et al. (2000) Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 32:205–212

    Article  PubMed  CAS  Google Scholar 

  30. Kwak HS, Lee JM, Kim CS (2004) Preoperative detection of hepatocellular carcinoma: comparison of combined contrast-enhanced MR imaging and combined CT during arterial portography and CT hepatic arteriography. Eur Radiol 14:447–457

    Article  PubMed  Google Scholar 

  31. Kim YK, Kim CS, Kwak HS, Lee JM (2004) Three-dimensional dynamic liver MR imaging using sensitivity encoding for detection of hepatocellular carcinomas: comparison with superparamagnetic iron oxide-enhanced mr imaging. J Magn Reson Imaging 20:826–837

    Article  PubMed  Google Scholar 

  32. Choi SH, Lee JM, Yu NC, et al. (2008) Hepatocellular carcinoma in liver transplantation candidates: detection with gadobenate dimeglumine-enhanced MRI. Am J Roentgenol 191:529–536

    Article  Google Scholar 

  33. Kim YK, Kim CS, Han YM, et al. (2009) Detection of hepatocellular carcinoma: gadoxetic acid-enhanced 3-dimensional magnetic resonance imaging versus multi-detector row computed tomography. J Comput Assist Tomogr 33:844–850

    Article  PubMed  Google Scholar 

  34. Kim SH, Kim SH, Lee J, et al. (2009) Gadoxetic acid-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR Am J Roentgenol 192:1675–1681

    Article  PubMed  Google Scholar 

  35. Ahn SS, Kim MJ, Lim JS, et al. (2010) Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 255:459–466

    Article  PubMed  Google Scholar 

  36. Lee JM, Kim SB, Lee JY, et al. (2008) Enhancement patterns on gadoxetic acid-enhanced MR imaging of hepatocellular carcinoma in the cirrhotic liver: comparison with multiphasic liver CT. 6th International Meeting Hepatocellular Carcinoma: Eastern and Western Experiences, p 19

  37. Kim JI, Lee JM, Choi JY, et al. (2008) The value of gadobenate dimeglumine-enhanced delayed phase MR imaging for characterization of hepatocellular nodules in the cirrhotic liver. Invest Radiol 43:202–210

    Article  PubMed  CAS  Google Scholar 

  38. Martí-Bonmatí L (1997) MR imaging characteristics of hepatic tumors. Eur Radiol 7:249–258

    Article  PubMed  Google Scholar 

  39. Do RKG, Rusinek H, Taouli B (2009) Dynamic contrast-enhanced MR imaging of the liver: current status and future directions. Magn Reson Imaging Clin N Am 17:339–349

    Article  PubMed  Google Scholar 

  40. Pandharipande PV, Krinsky GA, Rusinek H, Lee VS (2005) Perfusion imaging of the liver: current challenges and future goals. Radiology 234:661–673

    Article  PubMed  Google Scholar 

  41. Jarnagin WR, Schwartz LH, Gultekin DH, et al. (2009) Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 20:1589–1595

    Article  PubMed  CAS  Google Scholar 

  42. Chan NK, Obenaus A, Tan A, et al. (2009) Monitoring neovascularization of intraportal islet grafts by dynamic contrast enhanced magnetic resonance imaging. Islets 1:249–255

    Article  Google Scholar 

  43. Mross K, Fasol U, Frost A, et al. (2009) DCE-MRI assessment of the effect of vandetanib on tumor vasculature in patients with advanced colorectal cancer and liver metastases: a randomized phase I study. J Angiogenes Res 1:5

    Article  PubMed  Google Scholar 

  44. Ng CS, Raunig DL, Jackson EF, et al. (2010) Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. AJR Am J Roentgenol 194:W134–W140

    Article  PubMed  Google Scholar 

  45. Baxter S, Wang ZJ, Joe BN, et al. (2009) Timing bolus dynamic contrast-enhanced (DCE) MRI assessment of hepatic perfusion: Initial experience. J Magn Reson Imaging 29:1317–1322

    Article  PubMed  Google Scholar 

  46. Cuenod CA, Leconte I, Siauve N, et al. (2002) Deconvolution technique for measuring tissue perfusion by dynamic CT: application to normal and metastatic liver. Acad Radiol 9(suppl 1):S205–S211

    Article  PubMed  Google Scholar 

  47. Materne R, Smith AM, Peeters F, et al. (2002) Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med 47:135–142

    Article  PubMed  CAS  Google Scholar 

  48. Sourbron S, Sommer W, Zech CJ, Reiser MF, Herrmann K (2010) Tracer-kinetic analysis of Gd-EOB-DTPA in the liver with a dual-inlet two-compartment uptake model. In: Proceedings of the International Society for Magnetic Resonance in Medicine

  49. Brix G, Ziegler SI, Bellemann ME, et al. (2001) Quantification of [18F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med 42:1265–1273

    PubMed  CAS  Google Scholar 

  50. Michoux N, Huwart L, Abarca-Quinones J, et al. (2008) Transvascular and interstitial transport in rat hepatocellular carcinomas: dynamic contrastenhanced MRI assessment with low- and high-molecular weight agents. J Magn Reson Imaging 28:906–914

    Article  PubMed  Google Scholar 

  51. Vriens D, van Laarhoven HWM, van Asten JA, et al. (2009) Chemotherapy response monitoring of colorectal liver metastases by dynamic Gd-DTPA-enhanced MRI perfusion parameters and 18F-FDG PET metabolic rate. J Nucl Med 50:1777–1784

    Article  PubMed  CAS  Google Scholar 

  52. Nilsson H, Nordell A, Vargas R, et al. (2009) Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 29:1323–1331

    Article  PubMed  Google Scholar 

  53. Orton MR, Miyazaki K, Koh DM, et al. (2009) Optimizing functional parameter accuracy for breath-hold DCE-MRI of liver tumours. Phys Med Biol 54:2197–2215

    Article  PubMed  Google Scholar 

  54. Scharf J, Zapletal C, Hess T, et al. (1999) Assessment of hepatic perfusion in pigs by pharmacokinetic analysis of dynamic MR images. J Magn Reson Imaging 9:568–572

    Article  PubMed  CAS  Google Scholar 

  55. Scharf J, Kemmling A, Hess T, et al. (2007) Assessment of hepatic perfusion in transplanted livers by pharmacokinetic analysis of dynamic magnetic resonance measurements. Invest Radiol 42:224–229

    Article  PubMed  Google Scholar 

  56. Hagiwara M, Rusinek H, Lee VS, et al. (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging–initial experience. Radiology 246:926–934

    Article  PubMed  Google Scholar 

  57. Koh TS, Thng CH, Hartono S, et al. (2009) Dynamic contrast-enhanced CT imaging of hepatocellular carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol with tracer kinetics modeling. Eur Radiol 19:1184–1196

    Article  PubMed  Google Scholar 

  58. Koh TS, Thng CA, Lee PS, et al. (2008) Hepatic metastases: in vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology 249:307–320

    Article  PubMed  Google Scholar 

  59. Mescam M, Kretowski M, Bezy-Wendling J (2010) Multiscale model of liver DCE-MRI towards a better understanding of tumor complexity. IEEE Trans Med Imaging 29:699–707

    Article  PubMed  Google Scholar 

  60. White MJ, O’Gorman RL, Charles-Edwards EM, et al. (2007) Parametric mapping of the hepatic perfusion index with gadolinium-enhanced volumetric MRI. Br J Radiol 80:113–120

    Article  PubMed  CAS  Google Scholar 

  61. Schlemmer M, Sourbron SP, Schinwald N, et al. (2011) Perfusion patterns of metastatic gastrointestinal stromal tumor lesions under specific molecular therapy. Eur J Radiol 77(2):312–318

    Article  PubMed  Google Scholar 

  62. Pettigrew RI, Avruch L, Dannels W, Coumans J, Bernardino ME (1986) Fast-field-echo MR imaging with Gd-DTPA: physiologic evaluation of the kidney and liver. Radiology 160:561–563

    PubMed  CAS  Google Scholar 

  63. Peeters F, Annet L, Hermoye L, Van Beers BE (2004) Inflow correction of hepatic perfusion measurements using T1-weighted, fast gradient-echo, contrast-enhanced MRI. Magn Reson Med 51:710–717

    Article  PubMed  Google Scholar 

  64. Song T, Laine AF, Chen Q, et al. (2009) Optimal k-space sampling for dynamic contrast-enhanced MRI with an application to MR renography. Magn Reson Med 61:1242–1248

    Article  PubMed  Google Scholar 

  65. Song T, Lee V, Rusinek H, Kaur M, Laine A (2005) Automatic 4-D registration in dynamic MR renography. Conf Proc IEEE Eng Med Biol Soc 3:3067–3070

    PubMed  Google Scholar 

  66. Mainardi LT, Passera KM, Lucesoli A, et al. (2006) A method for dynamic subtraction MR imaging of the liver. BMC Med Imaging 6:5

    Article  PubMed  Google Scholar 

  67. Bokacheva L, Rusinek H, Chen Q, et al. (2007) Quantitative determination of Gd-DTPA concentration in T1-weighted MR renography studies. Magn Reson Med 57:1012–1018

    Article  PubMed  CAS  Google Scholar 

  68. Noterdaeme O, Brady M (2008) Contrast enhanced magnetic resonance imaging of the liver. Conf Proc IEEE Eng Med Biol Soc 2008:831–834

    PubMed  Google Scholar 

  69. Provenzale JM (2007) Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol 188:11–23

    Article  PubMed  Google Scholar 

  70. Faria SC, Ganesan K, Mwangi I, et al. (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29:1615–1635

    Article  PubMed  Google Scholar 

  71. Alisi A, Pinzani M, Nobili V (2009) Diagnostic power of fibroscan in predicting liver fibrosis in nonalcoholic fatty liver disease. Hepatology 50:2048–2049

    Article  PubMed  Google Scholar 

  72. Sandrasegaran K, Akisik FM, Lin C, et al. (2009) Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis. AJR Am J Roentgenol 193:1556–1560

    Article  PubMed  Google Scholar 

  73. Tatsumi C, Kudo M, Ueshima K, et al. (2010) Non-invasive evaluation of hepatic fibrosis for type C chronic hepatitis. Intervirology 53:76–81

    Article  PubMed  Google Scholar 

  74. Castera L, Foucher J, Bernard PH, et al. (2010) Pitfalls of liver stiffness measurement: a 5-year prospective study of 13,369 examinations. Hepatology 51:828–835

    PubMed  Google Scholar 

  75. Annet L, Materne R, Danse E, et al. (2003) Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 229:409–414

    Article  PubMed  Google Scholar 

  76. van Beers BE, Materne R, Annet L, et al. (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699

    Article  PubMed  Google Scholar 

  77. Martinez-Hernandez A (1985) The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4-induced cirrhosis. Lab Invest 53:166–186

    PubMed  CAS  Google Scholar 

  78. Turetschek K, Schima W, Stift A, et al. (1997) Diagnostic imaging after liver transplantation. Radiology 37:197–204

    Article  CAS  Google Scholar 

  79. Shimamura T, Saito S, Morita K, et al. (2000) Detection of vascular endothelial growth factor and its receptor expression in human hepatocellular carcinoma biopsy specimens. J Gastroenterol Hepatol 15:640–646

    Article  PubMed  CAS  Google Scholar 

  80. Terayama N, Terada T, Nakanuma Y (1996) An immunohistochemical study of tumour vessels in metastatic liver cancers and the surrounding liver tissue. Histopathology 29:37–43

    Article  PubMed  CAS  Google Scholar 

  81. Abou-Alfa GK, Schwartz L, Ricci S, et al. (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:4293–4300

    Article  PubMed  CAS  Google Scholar 

  82. Alberts SR, Wagman LD (2008) Chemotherapy for colorectal cancer liver metastases. Oncologist 13:1063–1073

    Article  PubMed  Google Scholar 

  83. El Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576

    Article  PubMed  CAS  Google Scholar 

  84. Sahani DV, Holalkere NS, Mueller PR, Zhu AX (2007) Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue—initial experience. Radiology 243:736–743

    Article  PubMed  Google Scholar 

  85. Tsushima Y, Blomley MJ, Yokoyama H, Kusano S, Endo K (2001) Does the presence of distant and local malignancy alter parenchymal perfusion in apparently disease-free areas of the liver? Dig Dis Sci 46:2113–2119

    Article  PubMed  CAS  Google Scholar 

  86. Thng CH, Koh TS, Collins DJ, Koh DM (2010) Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609

    Article  PubMed  Google Scholar 

  87. Cuenod C, Leconte I, Siauve N, et al. (2001) Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 218:556–561

    PubMed  CAS  Google Scholar 

  88. Morgan B, Thomas AL, Drevs J, et al. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph J. Zech.

Additional information

Wieland H. Sommer and Steven Sourbron contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, W.H., Sourbron, S., Huppertz, A. et al. Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches. Abdom Imaging 37, 164–179 (2012). https://doi.org/10.1007/s00261-011-9734-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-011-9734-9

Key words

Navigation