Skip to main content
Log in

Bioavailability and pharmacokinetics of the cardioprotecting flavonoid 7-monohydroxyethylrutoside in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The pharmacokinetics and bioavailability of monoHER, a promising protector against doxorubicin-induced cardiotoxicity, were determined after different routes of administration.

Methods

Mice were treated with 500 mg.kg−1 monoHER intraperitoneally (i.p.), subcutaneously (s.c.) or intravenously (i.v.) or with 1000 mg.kg−1 orally. Heart tissue and plasma were collected 24 h after administration. In addition liver and kidney tissues were collected after s.c. administration. The levels of monoHER were measured by HPLC with electrochemical detection.

Results

After i.v. administration the AUC0–120 min values of monoHER in plasma and heart tissue were 20.5±5.3 μmol.min.ml−1 and 4.9±1.3 μmol.min.g−1 wet tissue, respectively. After i.p. administration, a mean peak plasma concentration of about 130 μM monoHER was maintained from 5 to 15 min after administration. The AUC0–120 min values of monoHER were 6.1±1.1 μmol.min.ml−1 and 1.6±0.4 μmol.min.g−1 wet tissue in plasma and heart tissue, respectively. After s.c. administration, monoHER levels in plasma reached a maximum (about 230 μM) between 10 and 20 min after administration. The AUC0–120 min values of monoHER in plasma, heart, liver and kidney tissues were 8.0±0.6 μmol.min.ml−1, 2.0±0.1, 22.4±2.0 and 20.5±5.7 μmol.min.g−1, respectively. The i.p. and s.c. bioavailabilities were about 30% and 40%, respectively. After oral administration, monoHER could not be detected in plasma, indicating that monoHER had a very poor oral bioavailability.

Conclusions

MonoHER was amply taken up by the drug elimination organs liver and kidney and less by the target organ heart. Under cardioprotective conditions (500 mg/kg, i.p.), the Cmax was 131 μM and the AUC was 6.3 μM.min. These values will be considered endpoints for the clinical phase I study of monoHER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A–D.

Similar content being viewed by others

References

  1. Van Acker SABE, Towart R, Husken BCP, De Jong J, Van der Vijgh WJF, Bast A (1993) The protective effect of Venoruton and its main constituents on acute doxorubicin-induced cardiotoxicity. Phlebology Suppl 1:31

    Google Scholar 

  2. Haenen GRMM, Jansen FP, Bast A (1993) The antioxidant properties of O-(β-hydroxyethyl)-rutosides of the flavonoid mixture Venoruton. Phlebology Suppl 1:10

    Google Scholar 

  3. Van Acker SABE, Boven E, Kuiper K, Van den Berg D, Grimbergen JA, Kramer A, Bast A, Van der Vijgh WJF (1997) Monohyroxyethylrutoside, a dose dependent cardioprotective agent, does not affect the antitumor activity of doxorubicin. Clin Cancer Res 3:1747

    PubMed  Google Scholar 

  4. Van Acker FA, Van Acker SA, Kramer K, Haenen GRMM, Bast A, Van der Vijgh WJF (2000) MonoHER protects against chronic doxorubicin-induced cardiotoxicity when administered only once per week. Clin Cancer Res 6:1337

    PubMed  Google Scholar 

  5. Van Acker SABE, Van den Berg D, Tromp MNJL, Griffioen DH, Van Bennekom WP, Van der Vijgh WJF, Bast A (1996) Structural aspects of the antioxidant activity of flavonoids. Free Radic Biol Med 20:331

    Article  PubMed  Google Scholar 

  6. Van Acker SABE, Van Balen GP, Van den Berg D, Bast A, Van der Vijgh WJF (1998) Influence of iron chelation on the antioxidant activity of flavonoids. Biochem Pharmacol 56:935

    Article  PubMed  Google Scholar 

  7. Barrow A, Griffiths LA (1974) Metabolism of the hydroxyethylrutosides III. The fate of orally administered hydroxyethylrutosides in laboratory animals; metabolism by rat intestinal microflora in vitro. Xenobiotica 4:743

    CAS  Google Scholar 

  8. Barrow A, Griffiths LA (1974) Metabolism of the hydroxyethylrutosides II. Excretion and metabolism of 3′,4′,7-Tri-O-(β-hydroxyethyl) rutoside and related compounds in laboratory animals after parenteral administration. Xenobiotica 4:1

    CAS  PubMed  Google Scholar 

  9. Barrow A, Griffiths LA (1972) Metabolism of the hydroxyethylrutosides biliary and urinary excretion of 3′,4′,4-[hydroxyethyl-14C], 7-tetra-O-(β-hydroxyethyl)-rutoside in rats and monkeys after parenteral administration. Xenobiotica 2:575

    CAS  PubMed  Google Scholar 

  10. Hollman PCH, van Trijp JMP, Mengerlers MJB, de Vries JHM, Katan MB (1997) Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett 114:139

    Article  CAS  PubMed  Google Scholar 

  11. Griffiths LA, Barrow A (1972) The fate of orally and parenterally administered flavonoids in the mammals. Angiologica 9:162

    CAS  PubMed  Google Scholar 

  12. Manach C, Morand C, Texier O, Favier M, Agullo G, Demigne C, Regerat F, Remesy C (1995) Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr 125:1911

    CAS  PubMed  Google Scholar 

  13. Griffiths LA, Hackett AM (1978) Hepatic clearance and disposition of hydroxyethylated rutosides. Arch Toxicol Suppl 1:243

    PubMed  Google Scholar 

  14. Abou El Hassan MAI, Kedde MA, Bast A, Van der Vijgh WJF (2001) High performance liquid chromatography with electrochemical detection for the determination of 7-monohydroxyethylrutoside (monoHER) in plasma. J Chromatogr B 752:115

    Google Scholar 

  15. Abou El Hassan MAI, Kedde MA, Bast A, Van der Vijgh WJF (2001) Determination of monohydroxyethylrutoside (monoHER) in heart tissue by HPLC with electrochemical detection. J Chromatogr B 757:191

    Google Scholar 

  16. UKCCCR (1988) Guidelines for the welfare of animals in experimental neoplasia. Br J Cancer 58:109

    PubMed  Google Scholar 

  17. Wienert V, Gahlen W (1970) Renal excretion of trihydroxyethyl rutoside (Venoruton) after parenteral and oral administration. Hautarzt 21:278

    CAS  PubMed  Google Scholar 

  18. Ader P, Wessmann A, Wolffram S (2000) Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med 28:1056

    Article  CAS  PubMed  Google Scholar 

  19. Korst AEC, Boven E, Van der Sterre MLT, Fichtinger-Schepman AMJ, Van der Vijgh WJF (1998) Pharmacokinetics of cisplatin with and without amifostine in tumor-bearing nude mice. Eur J Cancer 34:412

    Article  CAS  PubMed  Google Scholar 

  20. Hackett AM, Griffiths LA (1977) The disposition and metabolism of 3′,4′,7-Tri-O-(β-hydroxyethyl) rutoside and 7-mono-O-(β-hydroxyethyl) rutoside in the mouse. Xenobiotica 7:641

    CAS  PubMed  Google Scholar 

  21. Hackett AM, Griffiths LA (1979) The metabolism and excretion of 7-O-(β-hydroxyethyl)-rutoside in the dog. Eur J Drug Metab Pharmacokinet 4:207

    CAS  PubMed  Google Scholar 

  22. Ekestroem S, Welti R (1990) The affinity of hydroxyethylrutosides for the venous wall and its efficacy in preventing early occlusions of aorta-coronary vein bypass graft. Phlebology 5 [Suppl 1]:41

  23. Neumann HAM, Carlsson K, Brom GH (1992) Uptake and Localization of O-(β-hydroxyethyl) rutosides in the venous wall, measured by laser scanning microscopy. Eur J Clin Pharmacol 43:423

    CAS  PubMed  Google Scholar 

  24. Abou El Hassan MAI, Touw D, Wilhelm A, Bast A, Van der Vijgh WJF (2000) Stability of monoHER in an aqueous formulation for i.v. administration. Int J Pharm 211:51

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou El Hassan, M.A.I., Kedde, M.A., Zwiers, U.T.H. et al. Bioavailability and pharmacokinetics of the cardioprotecting flavonoid 7-monohydroxyethylrutoside in mice. Cancer Chemother Pharmacol 52, 371–376 (2003). https://doi.org/10.1007/s00280-003-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0667-z

Keywords

Navigation