Skip to main content

Advertisement

Log in

Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Noscapine, a naturally occurring antitussive phthalideisoquinoline alkaloid, is a tubulin-binding agent currently in Phase I/II clinical trials for anticancer therapy. Unlike currently available antimitotics such as taxanes and vincas, noscapine is water-soluble, well tolerated, and shows no detectable toxicity.

Objective

The goal was to develop a simple, sensitive, quantitative, selective, and less time-consuming high-performance liquid chromatography (HPLC) method for determination of noscapine and to study its pharmacokinetics in mice models.

Method

Noscapine was extracted from mice plasma using the protein-precipitation method and detected using a reversed-phase C8 column with mobile phase consisting of 35% acetonitrile and 65% ammonium acetate buffer (pH 4.5) at 232 nm wavelength. Pharmacokinetic studies of noscapine were performed in mice following intravenous bolus at 10 mg/kg and oral administrations at 75, 150, and 300 mg/kg.

Results

The standard curves for noscapine estimation were linear between 390 and 50,000 ng/ml (lower limit of quantification was 390 ng/ml) and the recovery was ∼80%. Following 10 mg/kg intravenous dose, mean plasma concentrations of 7.88 μg/ml were achieved at 5 min in mice and declined with undetectable levels at 4 h. The mean total body clearance was 4.78 l/h. The mean volume of distribution (V d) was 5.05 l. Non-compartmental analysis yielded the mean area under the plasma concentration–time curve (AUC) for noscapine as 53.42, 64.08, and 198.35 h μg/ml reaching maximum plasma concentrations (C max) of 12.74, 23.24, and 46.73 μg/ml at a t max of 1.12, 1.50, and 0.46 h at the linearly increasing dose levels.

Conclusion

A rapid and simple HPLC/UV method for the quantification of noscapine in plasma has been developed to study pharmacokinetics of noscapine at tumor-suppressive doses in the mouse. Since orally available anticancer drugs are rare, therefore, noscapine, an innocuous agent, having a mean oral bioavailability of 31.5% over the studied dose range merits its further advancement in humans for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  PubMed  CAS  Google Scholar 

  2. Giannakakou P, Sackett D, Fojo T (2000) Tubulin/microtubules: still a promising target for new chemotherapeutic agents. J Natl Cancer Inst 92:182–183

    Article  PubMed  CAS  Google Scholar 

  3. Zhou J, Giannakakou P (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 1:65–71

    Article  Google Scholar 

  4. Jordan MA (2002) Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents 2:1–17

    Article  PubMed  CAS  Google Scholar 

  5. Fleming S, Lucas F, Schofield MA (2001) Therapeutic area review of oncology products and players. Expert Opin Emerg Drugs 6:317–329

    Article  PubMed  CAS  Google Scholar 

  6. Simon SM, Schindler M (1994) Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci USA 91:3497–3504

    Article  PubMed  CAS  Google Scholar 

  7. Van Zuylen L, Verweij J, Sparreboom A (2001) Role of formulation vehicles in taxane pharmacology. Invest New Drugs 19:125–141

    Article  PubMed  Google Scholar 

  8. Markman M (2003) Managing taxane toxicities. Support Care Cancer 11:144–147

    PubMed  Google Scholar 

  9. Dorr RT (1994) Pharmacology and toxicology of Cremophor EL. Ann Pharmacother 28:S11–S14

    PubMed  CAS  Google Scholar 

  10. Ye K, Ke Y, Keshava N, Shanks J, Kapp JA, Tekmal RR, Petros J, Joshi HC (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci USA 95:1601–1606

    Article  PubMed  CAS  Google Scholar 

  11. Wade A (1997) Martindale, the extra pharmacopoeia, 27th edn. The Pharmaceutical Press, London

    Google Scholar 

  12. Landen JW, Lang R, McMahon SJ, Rusan NM, Yvon AM, Adams AW, Sorcinelli MD, Campbell R, Bonaccorsi P, Ansel JC, Archer DR, Wadsworth P, Armstrong CA, Joshi HC (2002) Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma. Cancer Res 62:4109–4114

    PubMed  CAS  Google Scholar 

  13. Zhou J, Panda D, Landen JW, Wilson L, Joshi HC (2002) Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J Biol Chem 277:17200–17208

    Article  PubMed  CAS  Google Scholar 

  14. Zhou J, Gupta K, Yao J, Ye K, Panda D, Giannakakou P, Joshi HC (2002) Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine. J Biol Chem 277:39777–39785

    Article  PubMed  CAS  Google Scholar 

  15. Zhou J, Yao J, Joshi HC (2002) Attachment and tension in the spindle assembly checkpoint. J Cell Sci 115:3547–3555

    Article  PubMed  CAS  Google Scholar 

  16. Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainer BH, Van Meir EG, Glass JD, Joshi HC, Archer DR (2004) Noscapine crosses the blood–brain barrier and inhibits glioblastoma growth. Clin Cancer Res 10:5187–5201

    Article  PubMed  CAS  Google Scholar 

  17. Ke Y, Ye K, Grossniklaus HE, Archer DR, Joshi HC, Kapp JA (2000) Noscapine inhibits tumor growth with little toxicity to normal tissues or inhibition of immune responses. Cancer Immunol Immunother 49:217–225

    Article  PubMed  CAS  Google Scholar 

  18. Kuppens IE, Breedveld P, Beijnen JH, Schellens JH (2005) Modulation of oral drug bioavailability: from preclinical mechanism to therapeutic application. Cancer Invest 23:443–464

    PubMed  CAS  Google Scholar 

  19. Glavinas H, Krajcsi P, Cserepes J, Sarkadi B (2004) The role of ABC transporters in drug resistance, metabolism and toxicity. Curr Drug Deliv 1:27–42

    Article  PubMed  CAS  Google Scholar 

  20. Karlsson MO, Dahlstrom B, Eckernas SA, Johansson M, Alm AT (1990) Pharmacokinetics of oral noscapine. Eur J Clin Pharmacol 39:275–279

    Article  PubMed  CAS  Google Scholar 

  21. Haikala V, Sothmann A, Marvola M (1986) Comparative bioavailability and pharmacokinetics of noscapine hydrogen embonate and noscapine hydrochloride. Eur J Clin Pharmacol 31:367–369

    Article  PubMed  CAS  Google Scholar 

  22. Dahlstrom B, Mellstrand T, Lofdahl CG, Johansson M (1982) Pharmacokinetic properties of noscapine. Eur J Clin Pharmacol 22:535–539

    Article  PubMed  CAS  Google Scholar 

  23. Vedso S (1961) The determination of noscapine (narcotine) in plasma and urine. Acta Pharmacol Toxicol (Copenh) 18:119–128

    CAS  Google Scholar 

  24. Nayak KP, Brochmann-Hanssen E, Leong way E (1965) Biological disposition of noscapine I. Kinetics of metabolism, urinary excretion, and organ distribution. J Pharm Sci 54:191–194

    Article  PubMed  CAS  Google Scholar 

  25. Tsunoda N, Yoshimura H (1979) Metabolic fate of noscapine. II. Isolation and identification of novel metabolites produced by C–C bond cleavage. Xenobiotica 9:181–187

    Article  PubMed  CAS  Google Scholar 

  26. Tsunoda N, Yoshimura H (1981) Metabolic fate of noscapine. III. Further studies on identification and determination of the metabolites. Xenobiotica 11:23–32

    Article  PubMed  CAS  Google Scholar 

  27. Johansson M, Eksborg S, Arbin A (1983) Determination of noscapine in plasma by liquid chromatography. J Chromatogr 275:355–366

    Article  PubMed  CAS  Google Scholar 

  28. Jensen KM (1983) Determination of noscapine in serum by high-performance liquid chromatography. J Chromatogr 274:381–387

    Article  PubMed  CAS  Google Scholar 

  29. Zhu L, Chen X, Zhang Y, Yu H, Zhong D (2005) Simultaneous determination of methylephedrine and noscapine in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 820:175–182

    Article  PubMed  CAS  Google Scholar 

  30. Anderson JT, Ting AE, Boozer S, Brunden KR, Danzig J, Dent T, Harrington JJ, Murphy SM, Perry R, Raber A, Rundlett SE, Wang J, Wang N, Bennani YL (2005) Discovery of S-phase arresting agents derived from noscapine. J Med Chem 48:2756–2758

    Article  PubMed  CAS  Google Scholar 

  31. Anderson JT, Ting AE, Boozer S, Brunden KR, Crumrine C, Danzig J, Dent T, Faga L, Harrington JJ, Hodnick WF, Murphy SM, Pawlowski G, Perry R, Raber A, Rundlett SE, Stricker-Krongrad A, Wang J, Bennani YL (2005) Identification of novel and improved antimitotic agents derived from noscapine. J Med Chem 48:7096–7098

    Article  PubMed  CAS  Google Scholar 

  32. Zhou J, Gupta K, Aggarwal S, Aneja R, Chandra R, Panda D, Joshi HC (2003) Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol Pharmacol 63:799–807

    Article  PubMed  CAS  Google Scholar 

  33. Zhou J, Liu M, Aneja R, Chandra R, Joshi HC (2004) Enhancement of paclitaxel-induced microtubule stabilization, mitotic arrest, and apoptosis by the microtubule-targeting agent EM012. Biochem Pharmacol 68:2435–2441

    Article  PubMed  CAS  Google Scholar 

  34. Zhou J, Liu M, Luthra R, Jones J, Aneja R, Chandra R, Tekmal RR, Joshi HC (2005) EM012, a microtubule-interfering agent, inhibits the progression of multidrug-resistant human ovarian cancer both in cultured cells and in athymic nude mice. Cancer Chemother Pharmacol 55:461–465

    Article  PubMed  CAS  Google Scholar 

  35. Aneja R, Zhou J, Vangapandu SN, Zhou B, Chandra R, Joshi HC (2006) Drug resistant T-lymphoid tumors undergo apoptosis selectively by an antimicrotubule agent, EM011. Blood 107:2486–2492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Technical Support Unit at Lupin Research Park for their assistance in animal maintenance, dosing, and sample collection. We thank members of the Joshi Laboratory for discussions. This work was supported by a grant to HCJ from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Aneja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aneja, R., Dhiman, N., Idnani, J. et al. Preclinical pharmacokinetics and bioavailability of noscapine, a tubulin-binding anticancer agent. Cancer Chemother Pharmacol 60, 831–839 (2007). https://doi.org/10.1007/s00280-007-0430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0430-y

Keywords

Navigation