Skip to main content

Advertisement

Log in

Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children’s oncology group

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To develop a population pharmacokinetic model of irinotecan and its major metabolites in children with cancer and to identify covariates that predict variability in disposition.

Methods

A population pharmacokinetic model was developed using plasma concentration data from 82 patients participating in a multicenter Pediatric Oncology Group (POG) single agent phase II clinical trial. Patients between 1 and 21 years of age with solid tumors refractory to standard therapy received irinotecan, 50 mg/m2, as a 60-min intravenous infusion for 5 consecutive days every 3 weeks. Blood samples were collected and analyzed for irinotecan and three metabolites (SN-38, SN-38G, and APC). The population model was developed with NONMEM. Clearance and volume were scaled allometrically using corrected body weight. Exponential error models were used to describe the interindividual variance in pharmacokinetic parameters, and the residual error was described with a proportional model. Significant covariate effects were identified graphically using S-PLUS and were added to the base-model. The final model was evaluated by simulating data from two other POG trials.

Results

The best structural model for irinotecan and its metabolites consisted of six-compartments: two compartments for irinotecan and SN-38, and one each for APC and SN-38G. Age and bilirubin were found to be significant covariates affecting SN-38 clearance. SN-38 clearance was greater in patients less than 10 years of age and lower in patients with a total serum bilirubin >0.6 mg/dL. Simulations revealed that the model was able to predict drug and metabolite exposure (AUC) for patients receiving the same or similar doses (30–65 mg/m2) of irinotecan.

Conclusions

This population model accurately describes the pharmacokinetics of irinotecan and its primary metabolites. The model, which includes age and bilirubin as covariate effects on SN-38 clearance, is the first population model to describe the pharmacokinetics of irinotecan and its major metabolites in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ando Y, Hasegawa Y (2005) Clinical pharmacogenetics of irinotecan (CPT-11). Drug Metab Rev 37:565–574

    Article  PubMed  CAS  Google Scholar 

  2. Ando Y, Ueoka H, Sugiyama T, Ichiki M, Shimokata K, Hasegawa Y (2002) Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit 24:111–116

    Article  PubMed  CAS  Google Scholar 

  3. Blaney S, Berg SL, Pratt C, Weitman S, Sullivan J, Luchtman-Jones L, Bernstein M (2001) A phase I study of irinotecan in pediatric patients: a pediatric oncology group study. Clin Cancer Res 7:32–37

    PubMed  CAS  Google Scholar 

  4. Bomgaars L, Bernstein M, Krailo M, Kadota R, Das S, Chen Z, Adamson P, Blaney S (2007) Phase II trial of irinotecan in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol 25:4622–4627

    Article  PubMed  CAS  Google Scholar 

  5. Bomgaars L, Kerr J, Berg S, Kuttesch J, Klenke R, Blaney SM (2006) A phase I study of irinotecan administered on a weekly schedule in pediatric patients. Pediatr Blood Cancer 46:50–55

    Article  PubMed  CAS  Google Scholar 

  6. Chabot GG (1997) Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 33:245–259

    Article  PubMed  CAS  Google Scholar 

  7. de Jong FA, de Jonge MJ, Verweij J, Mathijssen RH (2006) Role of pharmacogenetics in irinotecan therapy. Cancer Lett 234:90–106

    Article  PubMed  CAS  Google Scholar 

  8. de Jong FA, Kitzen JJ, de Bruijn P, Verweij J, Loos WJ (2006) Hepatic transport, metabolism and biliary excretion of irinotecan in a cancer patient with an external bile drain. Cancer Biol Ther 5:1105–1110

    PubMed  Google Scholar 

  9. Frost BM, Eksborg S, Bjork O, Abrahamsson J, Behrendtz M, Castor A, Forestier E, Lonnerholm G (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337

    Article  PubMed  Google Scholar 

  10. Furman WL, Crews KR, Billups C, Wu J, Gajjar AJ, Daw NC, Patrick CC, Rodriguez-Galindo C, Stewart CF, Dome JS, Panetta JC, Houghton PJ, Santana VM (2006) Cefixime allows greater dose escalation of oral irinotecan: a phase I study in pediatric patients with refractory solid tumors. J Clin Oncol 24:563–570

    Article  PubMed  CAS  Google Scholar 

  11. Furman WL, Stewart CF, Poquette CA, Pratt CB, Santana VM, Zamboni WC, Bowman LC, Ma MK, Hoffer FA, Meyer WH, Pappo AS, Walter AW, Houghton PJ (1999) Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17:1815–1824

    PubMed  CAS  Google Scholar 

  12. Gastonguay M, El-Tahtawy A (2005) Modeling and simulation guided design of a pediatric population pharmacokinetic trial for hydromorphone. AAPS Journal 7: Abstract W5318

  13. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Jang IJ, Lee DH, Lee JS (2006) Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 24:2237–2244

    Article  PubMed  CAS  Google Scholar 

  14. Innocenti F, Ratain MJ (2004) “Irinogenetics” and UGT1A: from genotypes to haplotypes. Clin Pharmacol Ther 75:495–500

    Article  PubMed  Google Scholar 

  15. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramirez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  PubMed  CAS  Google Scholar 

  16. Iyer L, Janisch L, Das S, Ramirez J, Hurley-Buterman CE, DeMario MM, Vokes EE, Kindler HL, Ratain MJ (2000) UGT1A1 promoter genetype correlates with pharmacokinetics of irinotecan (CPT-11). Proc ASCO 19:178a

    Google Scholar 

  17. Jansen WJ, Kolfschoten GM, Erkelens CA, Van Ark-Otte J, Pinedo HM, Boven E (1997) Anti-tumor activity of CPT-11 in experimental human ovarian cancer and human soft-tissue sarcoma. Int J Cancer 73:891–896

    Article  PubMed  CAS  Google Scholar 

  18. Karlsson M, Savic R (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82:17–20

    Article  PubMed  CAS  Google Scholar 

  19. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res 51:4187–4191

    PubMed  CAS  Google Scholar 

  20. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  PubMed  CAS  Google Scholar 

  21. Kim TW, Innocenti F (2007) Insights, challenges, and future directions in irinogenetics. Ther Drug Monit 29:265–270

    Article  PubMed  Google Scholar 

  22. Klein CE, Gupta E, Reid JM, Atherton PJ, Sloan JA, Pitot HC, Ratain MJ, Kastrissios H (2002) Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther 72:638–647

    Article  PubMed  CAS  Google Scholar 

  23. Ma MK, Zamboni WC, Radomski KM, Furman WL, Santana VM, Houghton PJ, Hanna SK, Smith AK, Stewart CF (2000) Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res 6:813–819

    PubMed  CAS  Google Scholar 

  24. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic–pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528

    Article  PubMed  CAS  Google Scholar 

  25. Marcuello E, Altes A, Menoyo A, Del Rio E, Gomez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682

    PubMed  CAS  Google Scholar 

  26. Marsh S (2005) Pharmacogenetics of colorectal cancer. Expert Opin Pharmacother 6:2607–2616

    Article  PubMed  CAS  Google Scholar 

  27. Marsh S, McLeod HL (2004) Pharmacogenetics of irinotecan toxicity. Pharmacogenomics 5:835–843

    Article  PubMed  CAS  Google Scholar 

  28. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, Sparreboom A, McLeod HL (2003) Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 9:3246–3253

    PubMed  CAS  Google Scholar 

  29. McLeod HL, Relling MV, Crom WR, Silverstein K, Groom S, Rodman JH, Rivera GK, Crist WM, Evans WE (1992) Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 18:S23–S29

    PubMed  CAS  Google Scholar 

  30. McLeod HL, Watters JW (2004) Irinotecan pharmacogenetics: is it time to intervene? J Clin Oncol 22:1356–1359

    Article  PubMed  Google Scholar 

  31. Mehra R, Murren J, Chung G, Smith B, Psyrri A (2005) Severe irinotecan-induced toxicities in a patient with uridine diphosphate glucuronosyltransferase 1A1 polymorphism. Clin Colorectal Cancer 5:61–64

    Article  PubMed  Google Scholar 

  32. Meyerhardt JA, Kwok A, Ratain MJ, McGovren JP, Fuchs CS (2004) Relationship of baseline serum bilirubin to efficacy and toxicity of single-agent irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 22:1439–1446

    Article  PubMed  CAS  Google Scholar 

  33. Minderman H, Cao S, Rustman YM (1998) Rational design of irinotecan administration based on preclinical models. Oncology (Williston Park) 12:22–30

    CAS  Google Scholar 

  34. Miya T, Goya T, Fujii H, Ohtsu T, Itoh K, Igarashi T, Minami H, Sasaki Y (2001) Factors affecting the pharmacokinetics of CPT-11: the body mass index, age and sex are independent predictors of pharmacokinetic parameters of CPT-11. Invest New Drugs 19:61–67

    Article  PubMed  CAS  Google Scholar 

  35. Mugishima H, Matsunaga T, Yagi K, Asami K, Mimaya J, Suita S, Kishimoto T, Sawada T, Tsuchida Y, Kaneko M (2002) Phase I study of irinotecan in pediatric patients with malignant solid tumors. J Pediatr Hematol Oncol 24:94–100

    Article  PubMed  Google Scholar 

  36. Paoluzzi L, Singh AS, Price DK, Danesi R, Mathijssen RH, Verweij J, Figg WD, Sparreboom A (2004) Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J Clin Pharmacol 44:854–860

    Article  PubMed  CAS  Google Scholar 

  37. Ratain MJ (2006) From bedside to bench to bedside to clinical practice: an odyssey with irinotecan. Clin Cancer Res 12:1658–1660

    Article  PubMed  Google Scholar 

  38. Sai K, Saeki M, Saito Y, Ozawa S, Katori N, Jinno H, Hasegawa R, Kaniwa N, Sawada J, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kitamura Y, Kamatani N, Minami H, Ohtsu A, Shirao K, Yoshida T, Saijo N (2004) UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 75:501–515

    Article  PubMed  CAS  Google Scholar 

  39. Schaaf LJ, Hammond LA, Tipping SJ, Goldberg RM, Goel R, Kuhn JG, Miller LL, Compton LD, Cisar LA, Elfring GL, Gruia G, McGovren JP, Pirotta N, Yin D, Sharma A, Duncan BA, Rothenberg ML (2006) Phase 1 and pharmacokinetic study of intravenous irinotecan in refractory solid tumor patients with hepatic dysfunction. Clin Cancer Res 12:3782–3791

    Article  PubMed  CAS  Google Scholar 

  40. Smith NF, Figg WD, Sparreboom A (2006) Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol In Vitro 20:163–175

    Article  PubMed  CAS  Google Scholar 

  41. Stewart CF (2001) Topoisomerase I interactive agents. Cancer Chemother Biol Response Modif 19:85–128

    PubMed  CAS  Google Scholar 

  42. Stewart CF, Panetta JC, O’Shaughnessy MA, Throm SL, Fraga CH, Owens T, Liu T, Billups C, Rodriguez-Galindo C, Gajjar A, Furman WL, McGregor LM (2007) UGT1A1 promoter genotype correlates with SN-38 pharmacokinetics, but not severe toxicity in patients receiving low-dose irinotecan. J Clin Oncol 25:2594–2600

    Article  PubMed  CAS  Google Scholar 

  43. Traub SL, Kichen L (1983) Estimating ideal body mass in children. Am J Hosp Pharm 40:107–110

    PubMed  CAS  Google Scholar 

  44. Vassal G, Couanet D, Stockdale E, Geoffray A, Geoerger B, Orbach D, Pichon F, Gentet JC, Picton S, Bergeron C, Cisar L, Assadourian S, Morland B (2007) Phase II trial of irinotecan in children with relapsed or refractory rhabdomyosarcoma: a joint study of the French Society of Pediatric Oncology and the United Kingdom Children’s Cancer Study Group. J Clin Oncol 25:356–361

    Article  PubMed  CAS  Google Scholar 

  45. Vassal G, Doz F, Frappaz D, Imadalou K, Sicard E, Santos A, O’Quigley J, Germa C, Risse ML, Mignard D, Pein F (2003) A phase I study of irinotecan as a 3-week schedule in children with refractory or recurrent solid tumors. J Clin Oncol 21:3844–3852

    Article  PubMed  CAS  Google Scholar 

  46. Venook AP, Enders Klein C, Fleming G, Hollis D, Leichman CG, Hohl R, Byrd J, Budman D, Villalona M, Marshall J, Rosner GL, Ramirez J, Kastrissios H, Ratain MJ (2003) A phase I and pharmacokinetic study of irinotecan in patients with hepatic or renal dysfunction or with prior pelvic radiation: CALGB 9863. Ann Oncol 14:1783–1790

    Article  PubMed  CAS  Google Scholar 

  47. Xiao AJ, Fiedler-Kelly J, Schaaf LJ, Elfring GL, Sardella S, Redman M (2002) Simultaneous population pharmacokinetic (PPK) modeling of irinotecan (CPT-11) and its major metabolites. Clin Pharmacol Ther 71:P63

    Google Scholar 

  48. Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther 72:265–275

    Article  PubMed  CAS  Google Scholar 

  49. Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis. J Clin Oncol 20:3293–3301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Thompson.

Additional information

Supported in part by: NICHD 5 U10 HD037242-09, NIH M01 RR000188-43, NCI U01 CA57745, NCI U10 CA98453, NCRR M01 RR00188-37, The Mitchell Ross Children’s Cancer Fund, Pharmacia/Upjohn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, P.A., Gupta, M., Rosner, G.L. et al. Pharmacokinetics of irinotecan and its metabolites in pediatric cancer patients: a report from the children’s oncology group. Cancer Chemother Pharmacol 62, 1027–1037 (2008). https://doi.org/10.1007/s00280-008-0692-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0692-z

Keywords

Navigation