Skip to main content

Advertisement

Log in

Physiologically based pharmacokinetic models for everolimus and sorafenib in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Everolimus is a mammalian target of rapamycin (mTOR) inhibitor approved as an immunosuppressant and for second-line therapy of hepatocellular carcinoma (HCC) and renal cell carcinoma (RCC). Sorafenib is a multikinase inhibitor used as first-line therapy in HCC and RCC. This study assessed the pharmacokinetics (PK) of everolimus and sorafenib alone and in combination in plasma and tissues, developed physiologically based pharmacokinetic (PBPK) models in mice, and assessed the possibility of PK drug interactions.

Methods

Single and multiple oral doses of everolimus and sorafenib were administered alone and in combination in immunocompetent male mice and to severe combined immune-deficient (SCID) mice bearing low-passage, patient-derived pancreatic adenocarcinoma in seven different studies. Plasma and tissue samples including tumor were collected over a 24-h period and analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Distribution of everolimus and sorafenib to the brain, muscle, adipose, lungs, kidneys, pancreas, spleen, liver, GI, and tumor was modeled as perfusion rate-limited, and all data from the diverse studies were fitted simultaneously using a population approach.

Results

PBPK models were developed for everolimus and sorafenib. PBPK analysis showed that the two drugs in combination had the same PK as each drug given alone. A twofold increase in sorafenib dose increased tumor exposure tenfold, thus suggesting involvement of transporters in tumor deposition of sorafenib.

Conclusions

The developed PBPK models suggested the absence of PK interaction between the two drugs in mice. These studies provide the basis for pharmacodynamic evaluation of these drugs in patient-derived primary pancreatic adenocarcinomas explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Atkins MB, Yasothan U, Kirkpatrick P (2009) Everolimus. Nat Rev Drug Discov 8:535–536

    Article  PubMed  CAS  Google Scholar 

  2. Piguet AC, Saar B, Hlushchuk R, St-Pierre MV, McSheehy PM, Radojevic V, Afthinos M, Terracciano L, Djonov V, Dufour JF (2011) Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma. Mol Cancer Ther 10:1007–1017

    Article  PubMed  CAS  Google Scholar 

  3. Rubio-Viqueira B, Hidalgo M (2006) Targeting mTOR for cancer treatment. Curr Opin Investig Drugs 7:501–512

    PubMed  CAS  Google Scholar 

  4. Agarwal S, Sane R, Ohlfest JR, Elmquist WF (2011) The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther 336:223–233

    Article  PubMed  CAS  Google Scholar 

  5. Harzstark AL, Small EJ, Weinberg VK, Sun J, Ryan CJ, Lin AM, Fong L, Brocks DR, Rosenberg JE (2011) A phase 1 study of everolimus and sorafenib for metastatic clear cell renal cell carcinoma. Cancer 117:4194–4200

    Article  PubMed  CAS  Google Scholar 

  6. McKeage K, Wagstaff AJ (2007) Sorafenib: in advanced renal cancer. Drugs 67:475–483 discussion 484–5

    Article  PubMed  CAS  Google Scholar 

  7. (2007) Nexavar Tablet prescribing information

  8. Wilhelm S, Chien DS (2002) BAY 43–9006: preclinical data. Curr Pharm Des 8:2255–2257

    Article  PubMed  CAS  Google Scholar 

  9. Komar G, Kauhanen S, Liukko K, Seppanen M, Kajander S, Ovaska J, Nuutila P, Minn H (2009) Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness. Clin Cancer Res 15:5511–5517

    Article  PubMed  CAS  Google Scholar 

  10. Gjedde SB, Gjedde A (1980) Organ blood flow rates and cardiac output of the BALB/c mouse. Comp Biochem Physiol A Physiol 67:5

    Google Scholar 

  11. Mager DE, Jusko WJ (2001) Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70:210–216

    Article  PubMed  CAS  Google Scholar 

  12. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    PubMed  CAS  Google Scholar 

  13. Leighton JK, Saber H, Lee H (2009) Pharmacology review-Everolimus. Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  14. O’Reilly T, McSheehy PM, Kawai R, Kretz O, McMahon L, Brueggen J, Bruelisauer A, Gschwind HP, Allegrini PR, Lane HA (2010) Comparative pharmacokinetics of RAD001 (everolimus) in normal and tumor-bearing rodents. Cancer Chemother Pharmacol 65:625–639

    Article  PubMed  Google Scholar 

  15. Kovarik JM, Kalbag J, Figueiredo J, Rouilly M, Frazier OL, Rordorf C (2002) Differential influence of two cyclosporine formulations on everolimus pharmacokinetics: a clinically relevant pharmacokinetic interaction. J Clin Pharmacol 42:95–99

    Article  PubMed  CAS  Google Scholar 

  16. Saber-Mahloogi H, Morse DE (2005) Pharmacology review-Sorafenib. Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  17. Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, Mould DR, Giaccone G, Yarchoan R, Venitz J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72:294–305

    Article  PubMed  CAS  Google Scholar 

  18. Kovarik JM, Beyer D, Bizot MN, Jiang Q, Allison MJ, Schmouder RL (2005) Pharmacokinetic interaction between verapamil and everolimus in healthy subjects. Br J Clin Pharmacol 60:434–437

    Article  PubMed  CAS  Google Scholar 

  19. Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22

    Article  PubMed  Google Scholar 

  20. Hsieh Y, Galviz G, Long BJ (2009) Ultra-performance hydrophilic interaction liquid chromatography/tandem mass spectrometry for the determination of everolimus in mouse plasma. Rapid Commun Mass Spectrom 23:1461–1466

    Article  PubMed  CAS  Google Scholar 

  21. Jain L, Gardner ER, Venitz J, Dahut W, Figg WD (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46:362–367

    Article  PubMed  CAS  Google Scholar 

  22. Baxter LT, Zhu H, Mackensen DG, Jain RK (1994) Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54:1517–1528

    PubMed  CAS  Google Scholar 

  23. Davies B, Morris T (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095

    Article  PubMed  CAS  Google Scholar 

  24. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 User’s Guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomed Simul Res

  25. Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW, Jusko WJ (2012) Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemother Pharmacol. doi:10.1007/s00280-013-2117-x

  26. Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600

    Article  PubMed  CAS  Google Scholar 

  27. Friedman JJ (1968) Muscle blood flow and 86Rb extraction: 86Rb as a capillary flow indicator. Am J Physiol 214:488–493

    PubMed  CAS  Google Scholar 

  28. Hotte SJ, Hirte HW (2002) BAY 43–9006: early clinical data in patients with advanced solid malignancies. Curr Pharm Des 8:2249–2253

    Article  PubMed  CAS  Google Scholar 

  29. Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Blood concentrations of everolimus are markedly increased by ketoconazole. J Clin Pharmacol 45:514–518

    Article  PubMed  CAS  Google Scholar 

  30. Kovarik JM, Beyer D, Bizot MN, Jiang Q, Shenouda M, Schmouder RL (2005) Effect of multiple-dose erythromycin on everolimus pharmacokinetics. Eur J Clin Pharmacol 61:35–38

    Article  PubMed  CAS  Google Scholar 

  31. Kovarik JM, Hartmann S, Hubert M, Berthier S, Schneider W, Rosenkranz B, Rordorf C (2002) Pharmacokinetic and pharmacodynamic assessments of HMG-CoA reductase inhibitors when coadministered with everolimus. J Clin Pharmacol 42:222–228

    Article  PubMed  CAS  Google Scholar 

  32. Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P (2006) Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692

    Article  PubMed  CAS  Google Scholar 

  33. Gnoth MJ, Sandmann S, Engel K, Radtke M (2010) In vitro to in vivo comparison of the substrate characteristics of sorafenib tosylate toward P-glycoprotein. Drug Metab Dispos 38:1341–1346

    Article  PubMed  CAS  Google Scholar 

  34. Chu C, Abbara C, Noel-Hudson MS, Thomas-Bourgneuf L, Gonin P, Farinotti R, Bonhomme-Faivre L (2009) Disposition of everolimus in mdr1a-/1b- mice and after a pre-treatment of lapatinib in Swiss mice. Biochem Pharmacol 77:1629–1634

    Article  PubMed  CAS  Google Scholar 

  35. Crowe A, Lemaire M (1998) In vitro and in situ absorption of SDZ-RAD using a human intestinal cell line (Caco-2) and a single pass perfusion model in rats: comparison with rapamycin. Pharm Res 15:1666–1672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nancy Pyszczynski, Ninfa Straubinger, Rose Pitoniak, Kim Clark, and Joshua Prey for excellent technical assistance. We are grateful to The Novartis Institute for Biomedical Research Basel, Switzerland, for providing everolimus for animal studies. Grant Support-GM57980 and a Clinical Translational Science Award from the University at Buffalo (2011).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawaskar, D.K., Straubinger, R.M., Fetterly, G.J. et al. Physiologically based pharmacokinetic models for everolimus and sorafenib in mice. Cancer Chemother Pharmacol 71, 1219–1229 (2013). https://doi.org/10.1007/s00280-013-2116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2116-y

Keywords

Navigation