Skip to main content
Log in

Bridging sequence diversity and tissue-specific expression by DNA methylation in genes of the mouse prolactin superfamily

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Much of the DNA in genomes is organized within gene families and hierarchies of gene superfamilies. DNA methylation is the main epigenetic event involved in gene silencing and genome stability. In the present study, we analyzed the DNA methylation status of the prolactin (PRL) superfamily to obtain insight into its tissue-specific expression and the evolution of its sequence diversity. The PRL superfamily in mice consists of two dozen members, which are expressed in a tissue-specific manner. The genes in this family have CpG-less sequences, and they are located within a 1-Mb region as a gene cluster on chromosome 13. We tentatively grouped the family into several gene clusters, depending on location and gene orientation. We found that all the members had tissue-dependent differentially methylated regions (T-DMRs) around the transcription start site. The T-DMRs are hypermethylated in nonexpressing tissues and hypomethylated in expressing cells, supporting the idea that the expression of the PRL superfamily genes is subject to epigenetic regulation. Interestingly, the DNA methylation patterns of T-DMRs are shared within a cluster, while the patterns are different among the clusters. Finally, we reconstituted the nucleotide sequences of T-DMRs by converting TpG to CpG based on the consideration of a possible conversion of 5-methylcytosine to thymine by spontaneous deamination during the evolutionary process. On the phylogenic tree, the reconstituted sequences were well matched with the DNA methylation pattern of T-DMR and orientation. Our study suggests that DNA methylation is involved in tissue-specific expression and sequence diversity during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhattacharyya S, Lin J, Linzer D (2002) Reactivation of a hematopoietic endocrine program of pregnancy contributes to recovery from thrombocytopenia. Mol Endocrinol 16:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, de Jong PJ (2009) Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5:e1000538

    Article  PubMed  Google Scholar 

  • Cho J, Kimura H, Minami T, Ohgane J, Hattori N, Tanaka S, Shiota K (2001) DNA methylation regulates placental lactogen I gene expression. Endocrinology 142:3389–3396

    Article  PubMed  CAS  Google Scholar 

  • Choong ML, Tan AC, Luo B, Lodish HF (2003) A novel role for proliferin-2 in the ex vivo expansion of hematopoietic stem cells. FEBS Lett 550:155–162

    Article  PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Wang D, Liu B, Kasik JW, Müller H, White RA, Hummel GS, Soares MJ (2000) Three novel paralogs of the rodent prolactin gene family. J Endocrinol 166:63–75

    Article  PubMed  CAS  Google Scholar 

  • Fassett J, Nilsen-Hamilton M (2001) Mrp3, a mitogen-regulated protein/proliferin gene expressed in wound healing and in hair follicles. Endocrinology 142:2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Nishino K, Ko Y, Ohgane J, Tanaka S, Shiota K (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279:17063–17069

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Ogawa M, Sakai Y, Takeuchi Y, Komatsu N, Shiozawa M, Tanabe K, Aiso S (1999) PLP-I: a novel prolactin-like gene in rodents. Biochim Biophys Acta 1447:291–297

    PubMed  CAS  Google Scholar 

  • Ho Y, Liebhaber SA, Cooke NE (2004) Activation of the human GH gene cluster: roles for targeted chromatin modification. Trends Endocrinol Metab 15:40–45

    Article  PubMed  CAS  Google Scholar 

  • Ho-Chen J, Bustamante J, Soares M (2007) Prolactin-like protein-f subfamily of placental hormones/cytokines: responsiveness to maternal hypoxia. Endocrinology 148:559–565

    Article  PubMed  CAS  Google Scholar 

  • Imamura T, Ohgane J, Ito S, Ogawa T, Hattori N, Tanaka S, Shiota K (2001) CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons. Genomics 76:117–125

    Article  PubMed  CAS  Google Scholar 

  • Janion C (1982) Influence of methionine on the mutation frequency in Salmonella typhimurium. Mutat Res 94:331–338

    Article  PubMed  CAS  Google Scholar 

  • Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E, Figueroa ME, Glass JL, Chen Q, Montagna C, Hatchwell E, Selzer RR, Richmond TA, Green RD, Melnick A, Greally JM (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055

    Article  PubMed  CAS  Google Scholar 

  • Kimura F, Takakura K, Takebayashi K, Ishikawa H, Kasahara K, Goto S, Noda Y (2001) Messenger ribonucleic acid for the mouse decidual prolactin is present and induced during in vitro decidualization of endometrial stromal cells. Gynecol Endocrinol 15:426–432

    PubMed  CAS  Google Scholar 

  • Kimura AP, Sizova D, Handwerger S, Cooke NE, Liebhaber SA (2007) Epigenetic activation of the human growth hormone gene cluster during placental cytotrophoblast differentiation. Mol Cell Biol 27:6555–6568

    Article  PubMed  CAS  Google Scholar 

  • Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Poole J, Linzer DI (1997) Three new members of the mouse prolactin/growth hormone family are homologous to proteins expressed in the rat. Endocrinology 138:5541–5549

    Article  PubMed  CAS  Google Scholar 

  • Linzer DI, Nathans D (1984) Nucleotide sequence of a growth-related mRNA encoding a member of the prolactin-growth hormone family. Proc Natl Acad Sci USA 81:4255–4259

    Article  PubMed  CAS  Google Scholar 

  • Long M (2001) Evolution of novel genes. Curr Opin Genet Dev 11:673–680

    Article  PubMed  CAS  Google Scholar 

  • Louis E (2007) Evolutionary genetics: making the most of redundancy. Nature 449:673–674

    Article  PubMed  CAS  Google Scholar 

  • Mallon AM, Wilming L, Weekes J, Gilbert JG, Ashurst J, Peyrefitte S, Matthews L, Cadman M, McKeone R, Sellick CA, Arkell R, Botcherby MR, Strivens MA, Campbell RD, Gregory S, Denny P, Hancock JM, Rogers J, Brown SD (2004) Organization and evolution of a gene-rich region of the mouse genome: a 12.7-Mb region deleted in the Del(13)Svea36H mouse. Genome Res 14:1888–1901

    Article  PubMed  CAS  Google Scholar 

  • Müller H, Ishimura R, Orwig KE, Liu B, Soares MJ (1998) Homologues for prolactin-like proteins A and B are present in the mouse. Biol Reprod 58:45–51

    Article  PubMed  Google Scholar 

  • Muramoto H, Yagi S, Hirabayashi K, Sato S, Ohgane J, Tanaka S, Shiota K (2010) Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions. Genes Cells 15:855–865

    PubMed  CAS  Google Scholar 

  • Nishino K, Hattori N, Tanaka S, Shiota K (2004) DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem 279:22306–22313

    Article  PubMed  CAS  Google Scholar 

  • Orwig KE, Ishimura R, Müller H, Liu B, Soares MJ (1997) Identification and characterization of a mouse homolog for decidual/trophoblast prolactin-related protein. Endocrinology 138:5511–5517

    Article  PubMed  CAS  Google Scholar 

  • Rakyan V, Down T, Thorne N, Flicek P, Kulesha E, Gräf S, Tomazou E, Bäckdahl L, Johnson N, Herberth M, Howe K, Jackson D, Miretti M, Fiegler H, Marioni J, Birney E, Hubbard T, Carter N, Tavaré S, Beck S (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18:1518–1529

    Article  PubMed  CAS  Google Scholar 

  • Russell GJ, Walker PM, Elton RA, Subak-Sharpe JH (1976) Doublet frequency analysis of fractionated vertebrate nuclear DNA. J Mol Biol 108:1–23

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Yagi S, Arai Y, Hirabayashi K, Hattori N, Iwatani M, Okita K, Ohgane J, Tanaka S, Wakayama T, Yamanaka S, Shiota K (2010) Genome-wide DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) residing in mouse pluripotent stem cells. Genes Cells 15:607–618

    Article  PubMed  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Shiota K (2004) DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res 105:325–334

    Article  PubMed  CAS  Google Scholar 

  • Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, Hattori N (2002) Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7:961–969

    Article  PubMed  CAS  Google Scholar 

  • Simmons D, Rawn S, Davies A, Hughes M, Cross J (2008) Spatial and temporal expression of the 23 murine prolactin/placental lactogen-related genes is not associated with their position in the locus. BMC Genomics 9:352

    Article  PubMed  Google Scholar 

  • Soares M (2004) The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2:51

    Article  PubMed  Google Scholar 

  • Soares M, Alam S, Duckworth M, Horseman N, Konno T, Linzer D, Maltais L, Nilsen-Hamilton M, Shiota K, Smith J, Wallis M (2007a) A standardized nomenclature for the mouse and rat prolactin superfamilies. Mamm Genome 18:154–156

    Article  PubMed  Google Scholar 

  • Soares MJ, Konno T, Alam SM (2007b) The prolactin family: effectors of pregnancy-dependent adaptations. Trends Endocrinol Metab 18:114–121

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Sato S, Arai Y, Shinohara T, Tanaka S, Greally JM, Hattori N, Shiota K (2007) A new class of tissue-specifically methylated regions involving entire CpG islands in the mouse. Genes Cells 12:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Toft DJ, Linzer DI (1999) Prolactin (PRL)-like protein J, a novel member of the PRL/growth hormone family, is exclusively expressed in maternal decidua. Endocrinology 140:5095–5101

    Article  PubMed  CAS  Google Scholar 

  • Toft DJ, Rosenberg SB, Bergers G, Volpert O, Linzer DI (2001) Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc Natl Acad Sci USA 98:13055–13059

    Article  PubMed  CAS  Google Scholar 

  • Tomikawa J, Fukatsu K, Tanaka S, Shiota K (2006) DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage. J Biol Chem 281:12163–12169

    Article  PubMed  CAS  Google Scholar 

  • Wiemers D, Shao L, Ain R, Dai G, Soares M (2003) The mouse prolactin gene family locus. Endocrinology 144:313–325

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283–285

    Article  PubMed  CAS  Google Scholar 

  • Yagi S, Hirabayashi K, Sato S, Li W, Takahashi Y, Hirakawa T, Wu G, Hattori N, Ohgane J, Tanaka S, Liu XS, Shiota K (2008) DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) in mouse promoter regions demonstrating tissue-specific gene expression. Genome Res 18:1969–1978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan (21221008 to Kunio Shiota), and the National Institute of Biomedical Innovation (NIBIO), Japan. We thank Dr. Naoko Hattori and Dr. Shinya Sato for their helpful suggestions regarding analysis.

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Shiota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 35 kb)

Supplementary material 2 (DOC 29 kb)

335_2011_9383_MOESM3_ESM.tif

Supplementary material 3: Supplementary Fig. 1: LINE-rich/SINE-poor proportions in mouse PRL superfamily gene cluster. Repeat markers were visualized by USCS genome browser (mm8) (TIFF 2322 kb)

Supplementary material 4 (TIFF 5707 kb)

Supplementary material 5 (TIFF 5927 kb)

Supplementary material 6 (TIFF 4012 kb)

Supplementary material 7 (TIFF 804 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayakawa, K., Nakanishi, M.O., Ohgane, J. et al. Bridging sequence diversity and tissue-specific expression by DNA methylation in genes of the mouse prolactin superfamily. Mamm Genome 23, 336–345 (2012). https://doi.org/10.1007/s00335-011-9383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9383-x

Keywords

Navigation