Skip to main content

Advertisement

Log in

CYP46A1 T/C polymorphism associated with the APOEε4 allele increases the risk of Alzheimer’s disease

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Studies of the relationship between Alzheimer’s disease (AD) and single nucleotide polymorphism (SNP) T/C in intron 2 of the cholesterol-24S-hydroxylase gene (CYP46A1) have reported inconsistent results. To confirm the association between the CYP46A1 T/C polymorphism and AD risk, a meta-analysis containing 4,875 AD cases and 4,874 controls from 21 case–control studies was performed. There were 16 studies involving Europeans, four studies with Asians and one study with Africans. The combined results of overall analysis showed that the CYP46A1 T/C polymorphism increased the risk of AD significantly in recessive model [CC versus CT + TT, odds ratio (OR) = 1.20, 95 % confidence interval (CI) = 1.04–1.38, p = 0.01]. On subgroup analysis by ethnicity, similarly significant differences in recessive model were also found in Europeans. Another analysis of the synergistic effect of the CYP46A1 T/C polymorphism and the ε4 allele of the apolipoprotein E gene (APOE ε4) was performed in eight studies with available stratified information. The results revealed that the presence of APOE ε4 allele could strengthen the effect of CC genotype on AD risk, and the reverse was also true. In conclusion, our meta-analysis has successfully proved that CC genotype of the CYP46A1 T/C polymorphism could increase the risk of AD, and this effect would be weakened in APOE ε4 non-carriers and strengthened in APOE ε4 carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. St George-Hyslop PH (2000) Genetic factors in the genesis of Alzheimer’s disease. Ann NY Acad Sci 924:1–7

    Article  PubMed  CAS  Google Scholar 

  2. Bertram L (2009) Alzheimer’s disease genetics current status and future perspectives. Int Rev Neurobiol 84:167–184

    Article  PubMed  CAS  Google Scholar 

  3. Lambert JC, Amouyel P (2011) Genetics of Alzheimer’s disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21:295–301 (Epub 1 Mar 2011)

    Article  PubMed  CAS  Google Scholar 

  4. Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099 (Epub 6 Sept 2009)

    Article  PubMed  CAS  Google Scholar 

  5. Sleegers K, Lambert JC, Bertram L et al (2010) The pursuit of susceptibility genes for Alzheimer’s disease: progress and prospects. Trends Genet 26:84–93 (Epub 18 Jan 2010)

    Article  PubMed  CAS  Google Scholar 

  6. Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840

    Article  PubMed  CAS  Google Scholar 

  7. Martins IJ, Berger T, Sharman MJ et al (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308

    Article  PubMed  CAS  Google Scholar 

  8. D’Errico G, Vitiello G, Ortona O et al (2008) Interaction between Alzheimer’s Abeta (25–35) peptide and phospholipid bilayers: the role of cholesterol. Biochim Biophys Acta 1778:2710–2716 (Epub 28 Jul 2008)

    Article  PubMed  Google Scholar 

  9. Vitiello G, Grimaldi M, Ramunno A et al (2010) Interaction of a beta-sheet breaker peptide with lipid membranes. J Pept Sci 16:115–122

    Article  PubMed  CAS  Google Scholar 

  10. Bjorkhem I, Lutjohann D, Diczfalusy U et al (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    PubMed  CAS  Google Scholar 

  11. Papassotiropoulos A, Streffer JR, Tsolaki M et al (2003) Increased brain β-amyloid load, phosphorylated tau, and risk of Alzheimer disease associated with an intronic CYP46 polymorphism. Arch Neurol 60:29–35

    Article  PubMed  Google Scholar 

  12. Borroni B, Archetti S, Agosti C et al (2004) Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer disease: from risk factors to disease modulators. Neurobiol Aging 25:747–751

    Article  PubMed  CAS  Google Scholar 

  13. Tedde A, Rotondi M, Cellini E et al (2006) Lack of association between the CYP46 gene polymorphism and Italian late-onset sporadic Alzheimer’s disease. Neurobiol Aging 27:773.e1–773.e3 (Epub 1 Aug 2005)

    Article  Google Scholar 

  14. Alzheimer research forum (2009) (updated 29 Jan 2010) Gene overview of all published AD-association studies for CYP46A1. Available at http://www.alzgene.org/geneoverview.asp?geneID=105

  15. Bertram L, McQueen MB, Mullin K et al (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39:17–23

    Article  PubMed  CAS  Google Scholar 

  16. Fu BY, Ma SL, Tang NL et al (2009) Cholesterol 24-hydroxylase (CYP46A1) polymorphisms are associated with faster cognitive deterioration in Chinese older persons: a two-year follow up study. Int J Geriatr Psychiatry 24:921–926

    Article  PubMed  Google Scholar 

  17. He XM, Zhang ZX, Zhang JW et al (2006) An intronic cholesterol 24S-hydroxylase polymorphism associated with Alzheimer disease. Chin J Neurol 39:44–47

    CAS  Google Scholar 

  18. Wang F, Jia JP (2007) Correlation of cholesterol 24-hydroxylase and ATP-binding cassette transporter A1 polymorphisms with Alzheimer’s disease. Zhonghua Yi Xue Za Zhi 87:614–618

    PubMed  CAS  Google Scholar 

  19. Li Y, Chu LW, Wang B et al (2010) CYP46A1 functional promoter haplotypes decipher genetic susceptibility to Alzheimer’s disease. J Alzheimers Dis 21:1311–1323

    PubMed  CAS  Google Scholar 

  20. Kölsch H, Lütjohann D, Jessen F et al (2009) CYP46A1 variants influence Alzheimer’s disease risk and brain cholesterol metabolism. Eur Psychiatry 24:183–190 (Epub 16 Mar 2009)

    Article  PubMed  Google Scholar 

  21. Vega GL, Weiner MF (2007) Plasma 24S hydroxycholesterol response to statins in Alzheimer’s disease patients: effects of gender, CYP46, and ApoE polymorphisms. J Mol Neurosci 33:51–55

    Article  PubMed  CAS  Google Scholar 

  22. Shibata N, Kawarai T, Lee JH et al (2006) Association studies of cholesterol metabolism genes (CH25H, ABCA1 and CH24H) in Alzheimer’s disease. Neurosci Lett 391:142–146 (Epub 12 Sep 2005)

    Article  PubMed  CAS  Google Scholar 

  23. Helisalmi S, Vepsäläinen S, Koivisto AM et al (2006) Association of CYP46 intron 2 polymorphism in Finnish Alzheimer’s disease samples and a global scale summary. J Neurol Neurosurg Psychiatry 77:421–422

    Article  PubMed  CAS  Google Scholar 

  24. Desai P, DeKosky ST, Kamboh MI (2002) Genetic variation in the cholesterol 24-hydroxylase (CYP46) gene and the risk of Alzheimer’s disease. Neurosci Lett 328:9–12

    Article  PubMed  CAS  Google Scholar 

  25. Kölsch H, Lütjohann D, Ludwig M (2002) Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol Psychiatry 7:899–902

    Article  PubMed  Google Scholar 

  26. Chalmers KA, Culpan D, Kehoe PG et al (2004) APOE promoter, ACE1 and CYP46 polymorphisms and beta-amyloid in Alzheimer’s disease. Neuroreport 15:95–98

    Article  PubMed  CAS  Google Scholar 

  27. Combarros O, Infante J, Llorca J, Berciano J (2004) Genetic association of CYP46 and risk for Alzheimer’s disease. Dement Geriatr Cogn Disord 18:257–260 (Epub 29 Jul 2004)

    Article  PubMed  CAS  Google Scholar 

  28. Ingelsson M, Jesneck J, Irizarry MC, Hyman BT, Rebeck GW (2004) Lack of association of the cholesterol 24-hydroxylase (CYP46) intron 2 polymorphism with Alzheimer’s disease. Neurosci Lett 367:228–231

    Article  PubMed  CAS  Google Scholar 

  29. Johansson A, Katzov H, Zetterberg H et al (2004) Variants of CYP46A1 may interact with age and APOE to influence CSF Abeta42 levels in Alzheimer’s disease. Hum Genet 114:581–587 (Epub 18 Mar 2004)

    Article  PubMed  CAS  Google Scholar 

  30. Kabbara A, Payet N, Cottel D (2004) Exclusion of CYP46 and APOM as candidate genes for Alzheimer’s disease in a French population. Neurosci Lett 363:139–143

    Article  PubMed  CAS  Google Scholar 

  31. Wang B, Zhang C, Zheng W et al (2004) Association between a T/C polymorphism in intron 2 of cholesterol 24S-hydroxylase gene and Alzheimer’s disease in Chinese. Neurosci Lett 369:104–107

    Article  PubMed  CAS  Google Scholar 

  32. Golanska E, Hulas-Bigoszewska K, Wojcik I et al (2005) CYP46: a risk factor for Alzheimer’s disease or a coincidence? Neurosci Lett 383:105–108 (Epub 21 Apr 2005)

    Article  PubMed  CAS  Google Scholar 

  33. Juhász A, Rimanóczy A, Boda K et al (2005) CYP46 T/C polymorphism is not associated with Alzheimer’s dementia in a population from Hungary. Neurochem Res 30:943–948

    Article  PubMed  Google Scholar 

  34. Fernández Del Pozo V, Alvarez Alvarez M, Fernández Martínez M et al (2005) Polymorphism in the cholesterol 24S-hydroxylase gene (CYP46A1) associated with the APOEpsilon3 allele increases the risk of Alzheimer’s disease and of mild cognitive impairment progressing to Alzheimer’s disease. Dement Geriatr Cogn Disord 21:81–87 (Epub 9 Dec 2005)

    Article  PubMed  Google Scholar 

  35. Li Y, Chu LW, Chen YQ et al (2006) Intron 2 (T/C) CYP46 polymorphism is associated with Alzheimer’s disease in Chinese patients. Dement Geriatr Cogn Disord 22:399–404 (Epub 8 Sept 2006)

    Article  PubMed  CAS  Google Scholar 

  36. Ma SL, Tang NL, Lam LC, Chiu HF (2006) Polymorphisms of the cholesterol 24-hydroxylase (CYP46A1) gene and the risk of Alzheimer’s disease in a Chinese population. Int Psychogeriatr 18:37–45

    Article  PubMed  Google Scholar 

  37. Wang F, Jia J (2007) Polymorphisms of cholesterol metabolism genes CYP46 and ABCA1 and the risk of sporadic Alzheimer’s disease in Chinese. Brain Res 1147:34–38 (Epub 8 Feb 2007)

    Article  PubMed  CAS  Google Scholar 

  38. Golanska E, Hulas-Bigoszewska K, Sieruta M et al (2009) Earlier onset of Alzheimer’s disease: risk polymorphisms within PRNP, PRND, CYP46, and APOE genes. J Alzheimers Dis 17:359–368

    PubMed  CAS  Google Scholar 

  39. Ghebranious N, Mukesh B, Giampietro PF et al (2011) A pilot study of gene/gene and gene/environment interactions in Alzheimer disease. Clin Med Res 9:17–25 (Epub 3 Aug 2010)

    Article  PubMed  CAS  Google Scholar 

  40. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  41. Olgiati P, Politis AM, Papadimitriou GN, De Ronchi D, Serretti A (2011) Genetics of late-onset Alzheimer’s disease: update from the alzgene database and analysis of shared pathways. Int J Alzheimers Dis 832379 (Epub 10 Dec 2011)

  42. Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64:277–281

    Article  PubMed  CAS  Google Scholar 

  43. Llorca J, Rodríguez-Rodríguez E, Dierssen-Sotos T et al (2008) Meta-analysis of genetic variability in the beta-amyloid production, aggregation and degradation metabolic pathways and the risk of Alzheimer’s disease. Acta Neurol Scand 117:1–14 (Epub 14 Sept 2007)

    PubMed  CAS  Google Scholar 

  44. Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12:105–112

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. Six authors of this paper are willing to provide their autographs if necessary.

Ethical standard

All human studies must state that they have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Yin, Z., Liu, J. et al. CYP46A1 T/C polymorphism associated with the APOEε4 allele increases the risk of Alzheimer’s disease. J Neurol 260, 1701–1708 (2013). https://doi.org/10.1007/s00415-012-6690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6690-4

Keywords

Navigation