Skip to main content

Advertisement

Log in

Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease

  • Original Paper
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

We summarize the treatment of 20 patients with Crigler-Najjar disease (CND) managed at one center from 1989 to 2005 (200 patient-years). Diagnosis was confirmed by sequencing the UGTA1A gene. Nineteen patients had a severe (type 1) phenotype. Major treatment goals were to maintain the bilirubin to albumin concentration ratio at <0.5 in neonates and <0.7 in older children and adults, to avoid drugs known to displace bilirubin from albumin, and to manage temporary exacerbations of hyperbilirubinemia caused by illness or gallstones. A variety of phototherapy systems provided high irradiance over a large body surface. Mean total bilirubin for the group was 16±5 mg/dl and increased with age by approximately 0.8 mg/dl per year. The molar ratio of bilirubin to albumin ranged from 0.17 to 0.75 (mean: 0.44). The overall non-surgical hospitalization rate was 0.12 hospitalizations per patient per year; one-half of these were for neonatal hyperbilirubinemia and the remainder were for infectious illnesses. Ten patients (50%) underwent elective laproscopic cholecystectomy for cholelithiasis. No patient required invasive bilirubin removal or developed bilirubin-induced neurological damage under our care. Visual acuity and color discrimination did not differ between CND patients and age-matched sibling controls. Four patients treated with orthotopic liver transplantation were effectively cured of CND, although one suffered significant transplant-related complications.Conclusions. While patients await liver transplantation for CND, hyperbilirubinemia can be managed safely and effectively to prevent kernicterus. Lessons learned from CND can be applied to screening and therapy of non-hemolytic jaundice in otherwise healthy newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Except where otherwise noted, we use the abbreviation CND to refer to the severe (type I) phenotype.

  2. Historically, bilirubin in the circulation was measured in serum, which remains the convention in our hospital laboratory. However, many laboratories now measure total bilirubin in anti-coagulated blood. Plasma and serum total bilirubin values from the same blood specimen show no differences, and in CND patients the conjugated fraction is negligible. Therefore, in the present text we simply use “total bilirubin” to denote the total unconjugated bilirubin level as measured in plasma or serum.

  3. Overhead BB panels were constructed by Floyd Martin under the guidance of DHM. The BiliBlanket II Meter-based light meter and LED-based PortaBed system were designed and constructed by HJV and colleagues. The LED light panel research and development was financed by a grant from the Dutch Crigler-Najjar Association. The upright lightbox was originally designed and built by Alex Carmichael (Australia) utilizing TL52 tubes. A modified BB tube-based lightbox unit, used for this study, was constructed by FM.

  4. Our hospital laboratory routinely reports bilirubin values in mg/dl and albumin in g/dl, whereas other laboratories use units of μmol/l. To interconvert these units: Bilirubin in mg/dl × 17.1 = bilirubin in μmol/l; albumin in g/dl × 152 = albumin in μmol/l

  5. Throughout the manuscript, calculated energy doses are based on direct light meter readings over the spectral range found effective toward photodegrading bilirubin (400–525 nm). This range encompasses the blue light absorption spectrum of bilirubin. These measurements are valid for comparing relativelight energies. However, for more precise calculation of total light energy striking a biological material, such as the retina, we use “full width at half max” (FWHM), defined as the spectral width at half-maximal light intensity. This is also called the “bandwidth” and for practical purposes takes into account the Gaussian distribution of energy over the detectable range.

Abbreviations

BB:

Special blue fluorescent tube

BSA:

Body surface area

CND:

Type I Crigler-Najjar disease

LED:

Light-emitting diode

References

  1. American Academy of Pediatrics, Subcommittee on Hyperbilirubinemia (2004) Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114:297–316

    Article  Google Scholar 

  2. Ahlfors CE, Herbsman O (2003) Unbound bilirubin in a term newborn with kernicterus. Pediatrics 111:1110–1112

    Article  PubMed  Google Scholar 

  3. Ahlfors CE, Wennberg RP (2004) Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 28:334–339

    Article  PubMed  Google Scholar 

  4. Andersen DH, Blanc WA, Crozier DN, Silverman WA (1956) A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. Pediatrics 18:614–625

    PubMed  CAS  Google Scholar 

  5. Bhutani VK, Donn SM, Johnson LH (2005) Risk management of severe neonatal hyperbilirubinemia to prevent kernicterus. Clin Perinatol 32:125–139

    Article  PubMed  Google Scholar 

  6. Bhutani VK, Johnson L, Sivieri EM (1999) Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 103:6–14

    Article  PubMed  CAS  Google Scholar 

  7. Brodersen R (1978) Determination of the vacant amount of high-affinity bilirubin binding site on serum albumin. Acta Pharmacol Toxicol 42:153–158

    Article  CAS  Google Scholar 

  8. Brodersen R (1979) Bilirubin. Solubility and interaction with albumin and phospholipid. J Biol Chem 254:2364–2369

    PubMed  CAS  Google Scholar 

  9. Brodersen R, Ebbesen F (1983) Bilirubin-displacing effect of ampicillin, indomethacin, chlorpromazine, gentamicin, and parabens in vitro and in newborn infants. J Pharm Sci 72:248–253

    Article  PubMed  CAS  Google Scholar 

  10. Brodersen R, Funding L (1977) Binding of bilirubin and long-chain fatty acids to human serum albumin with general remarks on displacement of firmly bound ligands. Scand J Clin Lab Invest 37:257–266

    Article  PubMed  CAS  Google Scholar 

  11. Brodersen R, Friis-Hansen B, Stern L (1983) Drug-induced displacement of bilirubin from albumin in the newborn. Dev Pharmacol Ther 6:217–229

    PubMed  CAS  Google Scholar 

  12. Cashore WJ (1998) Bilirubin metabolism and toxicity in the newborn. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. W.B. Saunders, Philadelphia, pp 1493–1498

    Google Scholar 

  13. Cashore WJ, Oh W, Brodersen R (1983) Bilirubin-displacing effect of furosemide and sulfisoxazole. An in vitro and in vivo study in neonatal serum. Dev Pharmacol Ther 6:230–238

    PubMed  CAS  Google Scholar 

  14. Chalasani N, Chowdhury NR, Chowdhury JR, Boyer TD (1997) Kernicterus in an adult who is heterozygous for Crigler-Najjar syndrome and homozygous for Gilbert-type genetic defect. Gastroenterology 112:2099–2103

    Article  PubMed  CAS  Google Scholar 

  15. Chowdhury JR, Wolkoff AW, Chowdhury NR, Arias IM (2001) Hereditary jaundice and disorders of bilirubin metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3063–3101

    Google Scholar 

  16. Christakis DA, Rivara FP (1998) Pediatricians’ awareness of and attitudes about four clinical practice guidelines. Pediatrics 101:825–830

    Article  PubMed  CAS  Google Scholar 

  17. Cooper-Peel C, Brodersen R, Robertson A (1996) Does ibuprofen affect bilirubin-albumin binding in newborn infant serum? Pharmacol Toxicol 79:297–299

    PubMed  CAS  Google Scholar 

  18. Cremer RJ, Perryman PW, Richards DH (1958) Influence of light on the hyperbilirubinaemia of infants. Lancet 1:1094–1097

    Article  PubMed  CAS  Google Scholar 

  19. Crigler JF Jr, Najjar VA (1952) Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 10:169–180

    PubMed  Google Scholar 

  20. Ebbesen F, Brodersen R (1982) Comparison between two preparations of human serum albumin in treatment of neonatal hyperbilirubinaemia. Acta Paediatr Scand 71:85–90

    Article  PubMed  CAS  Google Scholar 

  21. Ennever JF (1998) Phototherapy for neonatal jaundice. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. W.B. Saunders, Philadelphia, pp 1505–1520

    Google Scholar 

  22. Farnsworth D (1943) The Farnsworth-Munsell 100 hue dichotomous tests for colour vision. J Opt Soc Amer 33:1–586

    Google Scholar 

  23. Fink S, Karp W, Robertson A (1987) Ceftriaxone effect on bilirubin-albumin binding. Pediatrics 80:873–875

    PubMed  CAS  Google Scholar 

  24. Fink S, Karp W, Robertson A (1988) Effect of penicillins on bilirubin-albumin binding. J Pediatr 113:566–568

    Article  PubMed  CAS  Google Scholar 

  25. Gartner LM, Herrarias CT, Sebring RH (1998) Practice patterns in neonatal hyperbilirubinemia. Pediatrics 101:25–31

    Article  PubMed  CAS  Google Scholar 

  26. Guentert TW, Frey BM, Luedin E, Heinzl S, Brodersen R (1990) Increase of plasma nonesterified fatty acid concentration and decrease of albumin binding affinity after intravenous injection of glycocholate-lecithin mixed micelles. J Lab Clin Med 116:66–75

    PubMed  CAS  Google Scholar 

  27. Honore B, Brodersen R (1984) Albumin binding of anti-inflammatory drugs. Utility of a site-oriented versus a stoichiometric analysis. Mol Pharmacol 25:137–150

    PubMed  CAS  Google Scholar 

  28. Ivarsen R, Brodersen R (1989) Displacement of bilirubin from adult and newborn serum albumin by a drug and fatty acid. Dev Pharmacol Ther 12:19–29

    PubMed  CAS  Google Scholar 

  29. Jarnerot G, Andersen S, Esbjorner E, Sandstrom B, Brodersen R (1981) Albumin reserve for binding of bilirubin in maternal and cord serum under treatment with sulphasalazine. Scand J Gastroenterol 16:1049–1055

    Article  PubMed  CAS  Google Scholar 

  30. Johnson LM, Bhutani VK, Brown AK (2002) System-based approach to management of neonatal jaundice and prevention of kernicterus. J Pediatr 140:396–403

    Article  PubMed  Google Scholar 

  31. Kinney HC, Armstrong DD (2002) Perinatal neuropathology. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Arnold, London, p 519–606

    Google Scholar 

  32. Krukow N, Brodersen R (1972) Toxic effects in the Gunn rat of combined treatment with bilirubin and orotic acid. Acta Paediatr Scand 61:697–703

    Article  PubMed  CAS  Google Scholar 

  33. Kuang AA, Rosenthal P, Roberts JP, Renz JF, Stock P, Ascher NL, Emond JC (1996) Decreased mortality from technical failure improves results in pediatric liver transplantation. Arch Surg 131:887–892; discussion 892–883

    PubMed  CAS  Google Scholar 

  34. Lucey JF (1968) The future demise of exchange transfusions for neonatal hyperbilirubinemia. Dev Med Child Neurol 10:521–522

    Article  PubMed  CAS  Google Scholar 

  35. Martin E, Fanconi S, Kalin P, Zwingelstein C, Crevoisier C, Ruch W, Brodersen R (1993) Ceftriaxone-bilirubin-albumin interactions in the neonate: an in vivo study. Eur J Pediatr 152:530–534

    Article  PubMed  CAS  Google Scholar 

  36. Meropol SB, Luberti AA, De Jong AR, Weiss JC (1993) Home phototherapy: use and attitudes among community pediatricians. Pediatrics 91:97–100

    PubMed  CAS  Google Scholar 

  37. Nazer H, Al-Mehaidib A, Shabib S, Ali MA (1998) Crigler-Najjar syndrome in Saudi Arabia. Am J Med Genet 79:12–15

    Article  PubMed  CAS  Google Scholar 

  38. Ostrea EM, Jr., Bassel M, Fleury CA, Bartos A, Jesurun CA (1983) Influence of free fatty acids and glucose infusion on serum bilirubin and bilirubin binding to albumin: clinical implications. J Pediatr 102:426–432

    Article  PubMed  Google Scholar 

  39. Park WS, Chang YS, Chung SH, Seo DW, Hong SH, Lee M (2001) Effect of hypothermia on bilirubin-induced alterations in brain cell membrane function and energy metabolism in newborn piglets. Brain Res 922:276–281

    Article  PubMed  CAS  Google Scholar 

  40. Puffenberger EG, Hu-Lince D, Parod JM, Craig DW, Dobrin SE, Conway AR, Donarum EA, Strauss KA, Dunckley T, Cardenas JF, Melmed KR, Wright CA, Liang W, Stafford P, Flynn CR, Morton DH, Stephan DA (2004) Mapping of sudden infant death with dysgenesis of the testes syndrome (SIDDT) by a SNP genome scan and identification of TSPYL loss of function. Proc Natl Acad Sci USA 101:11689–11694

    Article  PubMed  CAS  Google Scholar 

  41. Rand EB, Olthoff KM (2003) Overview of pediatric liver transplantation. Gastroenterol Clin North Am 32:913–929

    Article  PubMed  Google Scholar 

  42. Rasmussen LF, Ahlfors CE, Wennberg RP (1978) Displacement of bilirubin from albumin by indomethacin. J Clin Pharmacol 18:477–481

    PubMed  CAS  Google Scholar 

  43. Rasmussen LF, Ahlfors CE, Wennberg RP (1976) The effect of paraben preservatives on albumin binding of bilirubin. J Pediatr 89:475–478

    Article  PubMed  CAS  Google Scholar 

  44. Robertson A, Brodersen R (1983) Effect of lactate, pyruvate, acetone, acetoacetate, and beta-hydroxybutyrate on albumin binding of bilirubin. J Pediatr 102:433–438

    Article  PubMed  CAS  Google Scholar 

  45. Robertson A, Brodersen R (1991) Effect of drug combinations on bilirubin-albumin binding. Dev Pharmacol Ther 17:95–99

    PubMed  CAS  Google Scholar 

  46. Robertson A, Fink S, Karp W (1988) Effect of cephalosporins on bilirubin-albumin binding. J Pediatr 112:291–294

    Article  PubMed  CAS  Google Scholar 

  47. Robertson A, Karp W, Brodersen R (1991) Bilirubin displacing effect of drugs used in neonatology. Acta Paediatr Scand 80:1119–1127

    Article  PubMed  CAS  Google Scholar 

  48. Robertson AF, Baker JP (2005) Lessons from the past. Semin Fetal Neonatal Med 10:23–30

    Article  PubMed  Google Scholar 

  49. Robinson PJ, Rapoport SI (1987) Binding effect of albumin on uptake of bilirubin by brain. Pediatrics 79:553–558

    PubMed  CAS  Google Scholar 

  50. Roger C, Koziel V, Vert P, Nehlig A (1995) Mapping of the consequences of bilirubin exposure in the immature rat: local cerebral metabolic rates for glucose during moderate and severe hyperbilirubinemia. Early Hum Dev 43:133–144

    Article  PubMed  CAS  Google Scholar 

  51. Schauer R, Stangl M, Lang T, Zimmermann A, Chouker A, Gerbes AL, Schildberg FW, Rau HG (2003) Treatment of Crigler-Najjar type 1 disease: relevance of early liver transplantation. J Pediatr Surg 38:1227–1231

    Article  PubMed  Google Scholar 

  52. Shevell MI, Majnemer A, Schiff D (1998) Neurologic perspectives of Crigler-Najjar syndrome type I. J Child Neurol 13:265–269

    Article  PubMed  CAS  Google Scholar 

  53. Suresh G, Lucey JF (1997) Lack of deafness in Crigler-Najjar syndrome type 1: a patient survey. Pediatrics 100:E9

    Article  PubMed  CAS  Google Scholar 

  54. van der Veere CN, Sinaasappel M, McDonagh AF, Rosenthal P, Labrune P, Odievre M, Fevery J, Otte JB, McClean P, Burk G, Masakowski V, Sperl W, Mowat AP, Vergani GM, Heller K, Wilson JP, Shepherd R, Jansen PL (1996) Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 24:311–315

    Article  PubMed  Google Scholar 

  55. Vreman HJ, Wong RJ, Murdock JR, Stevenson DK (2003) In vitro efficacy of an LED–based phototherapy device (NeoBLUE™) compared to traditional light sources. Pediatr Res 53:400A

    Google Scholar 

  56. Vreman HJ, Wong RJ, Stevenson DK (2004) Phototherapy: current methods and future directions. Semin Perinatol 28:326–333

    Article  PubMed  Google Scholar 

  57. Wadsworth SJ, Suh B (1988) In vitro displacement of bilirubin by antibiotics and 2-hydroxybenzoylglycine in newborns. Antimicrob Agents Chemother 32:1571–1575

    PubMed  CAS  Google Scholar 

  58. Walker PC (1987) Neonatal bilirubin toxicity. A review of kernicterus and the implications of drug-induced bilirubin displacement. Clin Pharmacokinet 13:26–50

    Article  PubMed  CAS  Google Scholar 

  59. Wennberg RP (2000) The blood-brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol 20:97–109

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We extend thanks to CND patients and their parents from our local community for their support of this work and their hopes for future progress. We thank the outstanding nursing, pharmacology, and biomedical engineering staffs at Lancaster General Hospital for providing patients exceptional clinical care. Floyd and Katie Martin were instrumental in gathering light measurements in the field and Tim Weaver, M.D., helped gather data for Fig. 2. Special thanks to Charles E. Ahlfors, M.D., for a technical review and helpful comments. Finally, thank you to the Dutch Crigler-Najjar Association (Huizen, The Netherlands), for funding development of the PortaBed LED system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin A. Strauss.

Appendix

Appendix

Potential bilirubin-albumin displacing interactions (see text for references)

 

SAFETY CLASS (see Note)

 

1

2

3

4

ANTI-INFLAMMATORY/ANTIPYRETIC

    

 Acetaminophen

   

 Aspirin

 

  

 Dexamethasone

   

 Ibuprofen

  

 

 Indomethacin

   

 Ketorolac

   

 Naproxen

   

 Phenacetin

   

 Prednisolone

   

 Salicylate, sodium

 

  

ANTIMICROBIAL

    

 Acyclovir

   

 Amoxicillin

  

 

 Amoxicillin-Clavulanate

  

 

 Amphotericin B

   

 Amphotericin, liposomal

    

 Ampicillin

  

 

 Ampicillin-Sulbactam

   

 Azithromycin

    

 Azlocillin

   

 Aztreonam

 

  

 Carbenicillin

   

 Cefazolin

  

 

 Cefalothin

   

 Cefepime

   

 Cefixime

   

 Cefmetazole

 

  

 Cefonicid

 

  

 Cefoperazone

 

  

 Ceforanide

   

 Cefotaxime

  

 

 Cefotetan

 

  

 Cefoxitin

   

 Cefpodoxime proxetil

   

 Ceftazidime

   

 Ceftizoxime

   

 Ceftriaxone

 

  

 Cefuroxime

   

 Cefuroxime axetil

   

 Cephalexin

   

 Cephapirin

   

 Cephradine

   

 Ciprofloxacin

   

 Clarithromycin

   

 Clindamycin

   

 Dicloxacillin

 

  

 Doxycycline

   

 Erythromycin

   

 Erythromycin ES-sulfisoxazole

 

  

 Fusidic acid

   

 Gangcyclovir

   

 Gentamicin

   

 Imipenem

   

 Imipenem-cilastatin

   

 Isoniazid

   

 Levofloxacin

   

 Lincomycin

   

 Linezolid

   

 Meropenem

   

 Methicillin

  

 

 Metronidazole

   

 Minocycline

   

 Nafcillin

   

 Nitrofurantoin

   

 Oxacillin

   

 Penicillin G

   

 Penicillin V

 

  

 Piperacillin

   

 Piperacillin-Tazobactam

   

 Rifampin

   

 Streptomycin

   

 Sulfisoxazole

 

  

 Sulphamethoxazole

 

  

 Sulphasalazine

 

  

 Tobramycin

   

 Trimethoprim

   

 Trimethoprim-Sulfa (Bactrim)

 

  

 Vancomycin

   

CARDIOVASCULAR DRUGS

    

 Atropine

   

 Bretylium tosylate

   

 Digoxin

   

 Disopyramide

   

 Dobutamine

   

 Dopamine

   

 Edrophonium chloride

   

 Enalapril

   

 Epinephrine

   

 Hydralazine

   

 Isoproterenol

   

 Lidocaine

   

 Nitroprusside

   

 Procainamide

   

 Propanalol

   

 Verapamil

   

CONTRAST AGENTS

    

 Diatrizoate sodium

   

 Iodate sodium

 

  

 Iodipamide sodium

 

  

 Iopanoic acid

 

  

 Meglumin ioglycamate

 

  

 Metrizamide

   

 Metrizoate sodium

   

DIURETICS

    

 Acetazolamide

 

  

 Bumetanide

   

 Chlorothiazide

   

 Ethacrynic acid

 

  

 Furosemide

  

 

 Hydrochlorothiazide

  

 

 Mannitol

   

 Spironolactone

   

NEUROACTIVE DRUGS

    

 Aminophylline

 

  

 Amitryptyline HCl

   

 Atomoxetine

   

 Bupropion

   

 Carbamazepine

   

 Chloral hydrate

   

 Clonazepam

   

 Codeine

   

 Desipramine HCl

   

 Diazepam

   

 Ethosuximide

   

 Etomidate

   

 Fentanyl

   

 Fluoxetine/Norfluoxetine

   

 Inhaled anesthetics

   

 Imipramine HCl

   

 Ketamine

   

 Lorazepam

   

 Meperidine

   

 Methylphenidate

   

 Midazolam

   

 Morphine

   

 Naloxone

   

 Nortryptyline

   

 Olanzapine

   

 Oxazepam

   

 Paroxetine

   

 Phenobarbital

   

 Phenytoin

   

 Primidone

   

 Propofol

   

 Risperidone

   

 Theophylline

   

 Thiopental

   

 Valproic acid

  

 

 Venlafaxine

   

NEUROMUSCULAR BLOCKING AGENTS

    

 Neostigmine

   

 Pancuronium

   

 Rocuronium

   

 Succinylcholine

   

 Vecuronium

   

PRESERVATIVES/METABOLITES [a]

    

 N-acetyl-DL-tryptophan

  

 

 N-acetyltyrosine

   

 Benzoic acid (benzoate sodium)

 

  

 Caprylic acid

  

 

 Hippurate (from benzoic acid)

    

 2-Hyroxybenzoylglycine

 

  

MISCELLANEOUS

    

 Bicarbonate

   

 Calcium chloride

   

 Calcium gluconate

   

 Carnitine

   

 Clofibrate

   

 Heparin

   

 Intralipid/free fatty acids [b]

  

 

 Magnesium sulfate

   

 Prostaglandin E1

   

 Tin mesoporphyrin

   

  1. 1 Probably SAFE for clinical use
  2. 2 Considered UNSAFE
  3. 3 Safety variable: eg. drug dosing and combinations
  4. 4 Insufficient data
  5. a) acetyltryptophan (stabiliser in HSA I), acetyltyrosine (component of some TPN amino acid mixtures), caprylic acid, hexanoic acid (stabiliser in HSA I and II)
  6. b) plasma free fatty acids are increased by fasting and infusions of intralipid, epinephrine or heparin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauss, K.A., Robinson, D.L., Vreman, H.J. et al. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr 165, 306–319 (2006). https://doi.org/10.1007/s00431-005-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-005-0055-2

Keywords

Navigation