Skip to main content

Advertisement

Log in

Daikenchuto (TU-100) ameliorates colon microvascular dysfunction via endogenous adrenomedullin in Crohn’s disease rat model

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Daikenchuto (TU-100), a traditional Japanese medicine, has been reported to up-regulate the adrenomedullin (ADM)/calcitonin gene-related peptide (CGRP) system, which is involved in intestinal vasodilatation. The microvascular dysfunction of the intestine in Crohn’s disease (CD), due to down-regulation of the ADM/CGRP system, is etiologically related to the recurrence of CD. Therefore, we investigated the vasodilatory effect of TU-100 in a CD rat model.

Methods

Colitis was induced by the rectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) in rats. Laser Doppler blood flowmetry was used to measure colonic blood flow. ADM, CGRP, and their receptors in the ischemic colon were measured by reverse transcription polymerase chain reaction (RT-PCR) and enzyme immunoassays. Additionally, we determined whether the intestinal epithelial cell line IEC-6 released ADM in response to TU-100.

Results

TU-100 increased blood flow in ischemic segments of the colon but not in hyperemic segments. Pretreatment with an antibody to ADM abolished the vasodilatory effect of TU-100. CGRP levels and βCGRP mRNA expression were decreased in the ischemic colon, while protein and mRNA levels of ADM were unchanged. Hydroxy α-sanshool, the main constituent of TU-100, was the most active component in improving blood flow. Additionally, both TU-100 and hydroxy α-sanshool enhanced the release of ADM from IEC-6 cells.

Conclusions

In the ischemic colon, endogenous βCGRP, but not ADM, was decreased. Thus, it was concluded that TU-100 ameliorated microvascular dysfunction by the up-regulation of endogenous ADM in the CD rat model. TU-100 may be a possible therapeutic agent for gastrointestinal ischemia-related diseases including CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D’Haens GR, Geboes K, Peeters M, Baert F, Penninckx F, Rutgeerts P. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology. 1998;114:262–7.

    Article  PubMed  Google Scholar 

  2. Olaison G, Smedh K, Sjodahl R. Natural course of Crohn’s disease after ileocolic resection: endoscopically visualised ileal ulcers preceding symptoms. Gut. 1992;33:331–5.

    Article  PubMed  CAS  Google Scholar 

  3. Rutgeerts P, Geboes K, Vantrappen G, Beyls J, Kerremans R, Hiele M. Predictability of the postoperative course of Crohn’s disease. Gastroenterology. 1990;99:956–63.

    PubMed  CAS  Google Scholar 

  4. Hulten L, Lindhagen J, Lundgren O, Fasth S, Ahren C. Regional intestinal blood flow in ulcerative colitis and Crohn’s disease. Gastroenterology. 1977;72:388–96.

    PubMed  CAS  Google Scholar 

  5. Carr ND, Pullan BR, Schofield PF. Microvascular studies in non-specific inflammatory bowel disease. Gut. 1986;27:542–9.

    Article  PubMed  CAS  Google Scholar 

  6. Angerson WJ, Allison MC, Baxter JN, Russell RI. Neoterminal ileal blood flow after ileocolonic resection for Crohn’s disease. Gut. 1993;34:1531–4.

    Article  PubMed  CAS  Google Scholar 

  7. Eysselein VE, Reinshagen M, Patel A, Davis W, Nast C, Sternini C. Calcitonin gene-related peptide in inflammatory bowel disease and experimentally induced colitis. Ann N Y Acad Sci. 1992;657:319–27.

    Article  PubMed  CAS  Google Scholar 

  8. Hatoum OA, Miura H, Binion DG. The vascular contribution in the pathogenesis of inflammatory bowel disease. Am J Physiol Heart Circ Physiol. 2003;285:H1791–6.

    PubMed  CAS  Google Scholar 

  9. Hatoum OA, Heidemann J, Binion DG. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:78–97.

    Article  PubMed  CAS  Google Scholar 

  10. Kono T, Kanematsu T, Kitajima M. Exodus of Kampo, traditional Japanese medicine, from the complementary and alternative medicines: is it time yet? Surgery. 2009;146:837–40.

    Article  PubMed  Google Scholar 

  11. Tokita Y, Satoh K, Sakaguchi M, Endoh Y, Mori I, Yuzurihara M, et al. The preventive effect of Daikenchuto on postoperative adhesion-induced intestinal obstruction in rats. Inflammopharmacology. 2007;15:65–6.

    Article  PubMed  CAS  Google Scholar 

  12. Suehiro T, Matsumata T, Shikada Y, Sugimachi K. The effect of the herbal medicines dai-kenchu-to and keishi-bukuryo-gan on bowel movement after colorectal surgery. Hepatogastroenterology. 2005;52:97–100.

    PubMed  Google Scholar 

  13. Iwai N, Kume Y, Kimura O, Ono S, Aoi S, Tsuda T. Effects of herbal medicine Dai-Kenchu-to on anorectal function in children with severe constipation. Eur J Pediatr Surg. 2007;17:115–8.

    Article  PubMed  CAS  Google Scholar 

  14. Endo S, Nishida T, Nishikawa K, Nakajima K, Hasegawa J, Kitagawa T, et al. Dai-kenchu-to, a Chinese herbal medicine, improves stasis of patients with total gastrectomy and jejunal pouch interposition. Am J Surg. 2006;192:9–13.

    Article  PubMed  Google Scholar 

  15. Itoh T, Yamakawa J, Mai M, Yamaguchi N, Kanda T. The effect of the herbal medicine dai-kenchu-to on post-operative ileus. J Int Med Res. 2002;30:428–32.

    PubMed  CAS  Google Scholar 

  16. Manabe N, Camilleri M, Rao A, Wong BS, Burton D, Busciglio I, et al. Effect of daikenchuto (TU-100) on gastrointestinal and colonic transit in humans. Am J Physiol Gastrointest Liver Physiol. 2010;298:G970–5.

    Article  PubMed  CAS  Google Scholar 

  17. Kono T, Kaneko A, Hira Y, Suzuki T, Chisato N, Ohtake N, et al. Anti-colitis and -adhesion effects of daikenchuto via endogenous adrenomedullin enhancement in Crohn’s disease mouse model. J Crohns Colitis. 2010;4:161–70.

    Article  PubMed  Google Scholar 

  18. Murata P, Kase Y, Ishige A, Sasaki H, Kurosawa S, Nakamura T. The herbal medicine Dai-kenchu-to and one of its active components [6]-shogaol increase intestinal blood flow in rats. Life Sci. 2002;70:2061–70.

    Article  PubMed  CAS  Google Scholar 

  19. Kono T, Koseki T, Chiba S, Ebisawa Y, Chisato N, Iwamoto J, et al. Colonic vascular conductance increased by Daikenchuto via calcitonin gene-related peptide and receptor-activity modifying protein 1. J Surg Res. 2008;150:78–84.

    Article  PubMed  CAS  Google Scholar 

  20. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993;192:553–60.

    Article  PubMed  CAS  Google Scholar 

  21. Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000;21:138–67.

    Article  PubMed  CAS  Google Scholar 

  22. Brell B, Temmesfeld-Wollbruck B, Altzschner I, Frisch E, Schmeck B, Hocke AC, et al. Adrenomedullin reduces Staphylococcus aureus alpha-toxin-induced rat ileum microcirculatory damage. Crit Care Med. 2005;33:819–26.

    Article  PubMed  CAS  Google Scholar 

  23. Temmesfeld-Wollbruck B, Hocke AC, Suttorp N, Hippenstiel S. Adrenomedullin and endothelial barrier function. Thromb Haemost. 2007;98:944–51.

    PubMed  Google Scholar 

  24. Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA, et al. Differential expression of alpha-CGRP and beta-CGRP by primary sensory neurons and enteric autonomic neurons of the rat. Neuroscience. 1988;25:195–205.

    Article  PubMed  CAS  Google Scholar 

  25. Holzer P. Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci. 2006;125:70–5.

    Article  PubMed  Google Scholar 

  26. Sternini C, Anderson K. Calcitonin gene-related peptide-containing neurons supplying the rat digestive system: differential distribution and expression pattern. Somatosens Mot Res. 1992;9:45–59.

    Article  PubMed  CAS  Google Scholar 

  27. Papa A, Scaldaferri F, Danese S, Guglielmo S, Roberto I, Bonizzi M, et al. Vascular involvement in inflammatory bowel disease: pathogenesis and clinical aspects. Dig Dis. 2008;26:149–55.

    Article  PubMed  Google Scholar 

  28. Dines KC, Mizisin AP, Jorge MC, Nunag KD, Kalichman MW. Effects of body and hindlimb temperature on laser Doppler blood flow and vascular conductance in rat sciatic nerve and skeletal muscle. J Neurol Sci. 1997;148:7–13.

    Article  PubMed  CAS  Google Scholar 

  29. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989;96:795–803.

    PubMed  CAS  Google Scholar 

  30. Anthony A, Dhillon AP, Pounder RE, Wakefield AJ. Ulceration of the ileum in Crohn’s disease: correlation with vascular anatomy. J Clin Pathol. 1997;50:1013–7.

    Article  PubMed  CAS  Google Scholar 

  31. Anthony A, Dhillon AP, Pounder RE, Wakefield AJ. The colonic mesenteric margin is most susceptible to injury in an experimental model of colonic ulceration. Aliment Pharmacol Ther. 1999;13:531–5.

    Article  PubMed  CAS  Google Scholar 

  32. Anthony A, Pounder RE, Dhillon AP, Wakefield AJ. Similarities between ileal Crohn’s disease and indomethacin experimental jejunal ulcers in the rat. Aliment Pharmacol Ther. 2000;14:241–5.

    Article  PubMed  CAS  Google Scholar 

  33. Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE. Crohn’s disease: pathogenesis and persistent measles virus infection. Gastroenterology. 1995;108:911–6.

    Article  PubMed  CAS  Google Scholar 

  34. Wakefield AJ, Sawyerr AM, Dhillon AP, Pittilo RM, Rowles PM, Lewis AA, et al. Pathogenesis of Crohn’s disease: multifocal gastrointestinal infarction. Lancet. 1989;2:1057–62.

    Article  PubMed  CAS  Google Scholar 

  35. Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil. 2008;20:1009–16.

    Article  PubMed  CAS  Google Scholar 

  36. Geboes K, Collins S. Structural abnormalities of the nervous system in Crohn’s disease and ulcerative colitis. Neurogastroenterol Motil. 1998;10:189–202.

    Article  PubMed  CAS  Google Scholar 

  37. Cameron VA, Fleming AM. Novel sites of adrenomedullin gene expression in mouse and rat tissues. Endocrinology. 1998;139:2253–64.

    Article  PubMed  CAS  Google Scholar 

  38. Sakata J, Asada Y, Shimokubo T, Kitani M, Inatsu H, Kitamura K, et al. Adrenomedullin in the gastrointestinal tract. Distribution and gene expression in rat and augmented gastric adrenomedullin after fasting. J Gastroenterol. 1998;33:828–34.

    Article  PubMed  CAS  Google Scholar 

  39. Kiyomizu A, Kitamura K, Kawamoto M, Eto T. Distribution and molecular forms of adrenomedullin and proadrenomedullin N-terminal 20 peptide in the porcine gastrointestinal tract. J Gastroenterol. 2001;36:18–23.

    Article  PubMed  CAS  Google Scholar 

  40. Marutsuka K, Nawa Y, Asada Y, Hara S, Kitamura K, Eto T, et al. Adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP) are present in human colonic epithelia and exert an antimicrobial effect. Exp Physiol. 2001;86:543–5.

    Article  PubMed  CAS  Google Scholar 

  41. Kishikawa H, Nishida J, Ichikawa H, Kaida S, Morishita T, Miura S, et al. Lipopolysaccharides stimulate adrenomedullin synthesis in intestinal epithelial cells: release kinetics and secretion polarity. Peptides. 2009;30:906–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research provided by the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 22591475). The authors thank Dr. Kazunori Hashimoto for supplying hydroxy α-sanshool. We are grateful to Dr. Masaru Sakaguchi and Mr. Yoshiyasu Satake for their skillful technical assistance. We also thank Drs. Masahiro Yamamoto, Shinichi Kasai, and Yoshio Kase for their helpful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Kono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kono, T., Omiya, Y., Hira, Y. et al. Daikenchuto (TU-100) ameliorates colon microvascular dysfunction via endogenous adrenomedullin in Crohn’s disease rat model. J Gastroenterol 46, 1187–1196 (2011). https://doi.org/10.1007/s00535-011-0438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0438-2

Keywords

Navigation