Skip to main content
Log in

Metabolism of select amino acids in bacteria from the pig small intestine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

This study investigated the metabolism of select amino acids (AA) in bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum and ileum of pigs. Cells were incubated at 37°C for 3 h in anaerobic media containing 0.5–5 mM select AA plus [U-14C]-labeled tracers to determine their decarboxylation and incorporation into bacterial protein. Results showed that all types of bacteria rapidly utilized glutamine, lysine, arginine and threonine. However, rates of the utilization of AA by pure cultures of E. coli and Klebsiella sp. were greater than those for mixed bacterial cultures or Streptococcus sp. The oxidation of lysine, threonine and arginine accounted for 10% of their utilization in these pure bacterial cultures, but values were either higher or lower in mixed bacterial cultures depending on AA, bacterial species and the gut segment (e.g., 15% for lysine in jejunal and ileal mixed bacteria; 5.5 and 0.3% for threonine in jejunal mixed bacteria and ileal mixed bacteria, respectively; and 20% for arginine in ileal mixed bacteria). Percentages of AA used for bacterial protein synthesis were 50–70% for leucine, 25% for threonine, proline and methionine, 15% for lysine and arginine and 10% for glutamine. These results indicate diverse metabolism of AA in small-intestinal bacteria in a species- and gut compartment-dependent manner. This diversity may contribute to AA homeostasis in the gut. The findings have important implications for both animal and human nutrition, as well as their health and well-beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

AA:

Amino acids

EAA:

Nutritionally essential amino acids

CFU:

Colony forming unit

NEAA:

Nutritionally nonessential amino acids

SCFA:

Short-chain fatty acid

References

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Ann Rev Biochem 50:23–40

    Article  PubMed  CAS  Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  PubMed  CAS  Google Scholar 

  • Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562

    Article  PubMed  CAS  Google Scholar 

  • Burrin DG, Davis TA (2004) Proteins and amino acids in enteral nutrition. Curr Opin Clin Nutr Metab Care 7:79–87

    Article  PubMed  CAS  Google Scholar 

  • Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu W, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23

    Article  Google Scholar 

  • Chen LX, Li P, Wang JJ, Li XL, Gao HJ, Yin YL, Hou YQ, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  PubMed  CAS  Google Scholar 

  • Claus SP, Tsang TM, Wang Y, Cloarec O, Skordi E, Martin F-P, Rezzi S, Ross A, Kochhar S, Holmes E, Nicholson JK (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Mol Syst Biol 4:219

    Article  PubMed  Google Scholar 

  • Dai ZL, Zhang J, Wu G, Zhu WY (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215

    Article  PubMed  CAS  Google Scholar 

  • Dai ZL, Zhu WY, Wu G (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  PubMed  CAS  Google Scholar 

  • Eller C, Crabill MR, Bryant MP (1971) Anaerobic roll tube media for nonselective enumeration and isolation of bacteria. Appl Microbiol 22:522–529

    PubMed  CAS  Google Scholar 

  • Flynn NE, Bird JG, Guthrie AS (2009) Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 37:123–129

    Article  PubMed  CAS  Google Scholar 

  • Flynn NE, Patryak M, Seely J, Wu G (2010) Glycine oxidation and conversion into amino acids in Saccharomyces cerevisiae and Candida albicans. Amino Acids 39:605–608

    Article  PubMed  CAS  Google Scholar 

  • Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18:385–411

    Article  PubMed  CAS  Google Scholar 

  • Jenkins LS, Nunn WD (1987) Regulation of the ato operon by the atoC gene in Escherichia coli. J Bacteriol 169:2096–2102

    PubMed  CAS  Google Scholar 

  • Jensen BB (1988) Effect of diet composition and virginiamycin on microbial activity in the digestive tract of pigs. In: Buraczewska L, Buraczewska S, Pastuzewska B, Zebrowska T (eds) Digestive physiology in the pig. Polish Acad Sci, Jabònna, Poland, pp 392–400

  • Kong XF, Yin YL, He QH, Yin FG, Liu HJ, Li TJ, Huang RL, Geng MM, Ruan Z, Deng ZY, Xie MY, Wu G (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM (2006) Postnatal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Kyriakidis DA, Tiligada E (2009) Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids 37:443–458

    Article  PubMed  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  PubMed  CAS  Google Scholar 

  • Libao-Mercado AJO, Zhu CL, Cant JP, Lapierre H, Thibault J-N, Sève B, Fuller MF, de Lange CFM (2009) Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J Nutr 139:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Lioliou EE, Kyriakidis DA (2004) The role of bacterial antizyme: from an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 3:8

    Article  PubMed  Google Scholar 

  • Lioliou EE, Mimitou EP, Grigoroudis AI, Panagiotidis CH, Panagiotidis CA, Kyriakidis DA (2005) Phosphorylation activity of the response regulator of the two-component signal transduction system AtoSC in Escherichia coli. Biochim Biophys Acta 1725:257–268

    Article  PubMed  CAS  Google Scholar 

  • Martin F-PJ, Sprenger N, Yap IKS, Wang Y, Bibiloni R, Rochat F, Rezzi S, Cherbut C, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2009) Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 8:2090–2105

    Article  PubMed  CAS  Google Scholar 

  • Metges CC (2000) Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 130:1857S–1864S

    PubMed  CAS  Google Scholar 

  • Metges CC, El-Khoury AE, Henneman L, Petzke KJ, Grant I, Bedri S, Pereira PP, Ajami AM, Fuller MF, Young VR (1999a) Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am J Physiol Endocrinol Metab 277:597–607

    Google Scholar 

  • Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedri S, Regan MM, Fuller MF, Young VR (1999b) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70:1046–1058

    PubMed  CAS  Google Scholar 

  • Pérez-Cano FJ, González-Castro A, Castellote C, Franch A, Castell M (2010) Influence of breast milk polyamines on suckling rat immune system maturation. Dev Comp Immunol 34:210–218

    Article  PubMed  Google Scholar 

  • Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041

    Article  PubMed  CAS  Google Scholar 

  • Rychlik JL, LaVera R, Russell JB (2002) Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr Microbiol 45:340–345

    Article  PubMed  CAS  Google Scholar 

  • Schaible UE, Kaufmann SHE (2005) A nutritive view on the host–pathogen interplay. Trends Microbiol 13:373–380

    Article  PubMed  CAS  Google Scholar 

  • Smith EA, Macfarlane GT (1996) Studies on amine production in the human colon: enumeration of amine-forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2:285–297

    Article  CAS  Google Scholar 

  • Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337

    Article  PubMed  CAS  Google Scholar 

  • Smith EA, Macfarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25:355–368

    Article  CAS  Google Scholar 

  • Sorimachi K (1999) Evolutionary changes reflected by the cellular amino acid composition. Amino Acids 17:207–226

    Article  PubMed  CAS  Google Scholar 

  • Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614

    PubMed  CAS  Google Scholar 

  • Torrallardona D, Harris CI, Fuller MF (2003) Pigs’ gastrointestinal microflora provide them with essential amino acids. J Nutr 133:1127–1131

    PubMed  CAS  Google Scholar 

  • van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625

    Article  PubMed  Google Scholar 

  • Wallace RJ (1986) Catabolism of amino acids by Megasphaera elsdenii LC1. Appl Environ Microbiol 51:1141–1143

    PubMed  CAS  Google Scholar 

  • Wallace RJ (1996) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126(4 Suppl):1326S–1334S

    PubMed  CAS  Google Scholar 

  • Windmueller HG (1982) Glutamine utilization by the small intestine. Adv Enzymol 53:201–237

    PubMed  CAS  Google Scholar 

  • Windmueller HG, Spaeth AE (1975) Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch Biochem Biophys 171:662–672

    Article  PubMed  CAS  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    PubMed  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    PubMed  CAS  Google Scholar 

  • Wu G, Flynn NE, Knabe DA (2000) Enhanced intestinal synthesis of polyamines from proline in cortisol-treated piglets. Am J Physiol Endocrinol Metab 279:395–402

    Google Scholar 

  • Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, Meininger CJ (2007) Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 137:2680–2685

    PubMed  CAS  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2009) Isolation and identification of amino acid utilizing bacteria from theporcine small intestine. Thesis, Nanjing Agricultural University, Nanjing, China

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (30810103909), the National Basic Research Program of China (2004CB117500-4), National Research Initiative Competitive Grants from the Animal Growth & Nutrient Utilization Program (2008-35206-18764) of the USDA National Institute of Food and Agriculture, and Texas AgriLife Research Hatch Project (H-8200). We are grateful to Dr. Jo-Ann Fleming, Dr. Haijun Gao, and Dr. Junjun Wang for technical assistance and helpful discussion. ZL Dai thanks the China Scholarship Council for support of his study at Texas A&M University between 17 February 2009 and 28 February 2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoyao Wu or Wei-Yun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, ZL., Li, XL., Xi, PB. et al. Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids 42, 1597–1608 (2012). https://doi.org/10.1007/s00726-011-0846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0846-x

Keywords

Navigation