Skip to main content
Log in

Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Imidazoacridinone C-1311 is a DNA-targeting antitumor intercalator/alkylator currently undergoing Phase II clinical trials. Here, we elucidated the sequence of death responses to C-1311 in human leukemia MOLT4 cells using drug concentration (30 nM) that causes near complete cell growth inhibition at 48 h. Early (6–12 h) responses included transient accumulation of cells at the G2/M border followed by also transient rise in several mitotic markers. Mitotic attempts were largely abnormal, resulting in numerous multinucleated cells (peaking at 24–39 h and declining markedly at later times). These events, indicative of mitotic catastrophe, were not associated with immediate cell death. The fraction of necrotic cells did not exceed 3%. Also, the classical manifestations of apoptosis were marginal at 24 h and their progression clearly followed the decline in the fraction of mitotic and multinucleated cells. Quantification of several apoptotic markers (including phosphatidylserine externalization, apoptotic DNA breaks, mitochondrial dysfunction, caspase activation, and cell membrane integrity) showed a considerable progression and the shift from early to late apoptosis at later times. At 72 h, >80% of cells were apoptotic. Collectively, these findings show that C-1311-induced mitotic catastrophe is not the ultimate death event but rather a step precipitating delayed, albeit massive, apoptotic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C-1311:

5-diethylaminoethylamino-8-hydroxyimidazoacridinone (Symadex)

cdc2:

Cyclin-dependent kinase 1 (Cdk1)

ΔΨm:

Mitochondrial transmembrane potential

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol bis(β-aminoethyl ether)-N, N, N′, N′-tetraacetic acid

FITC:

Fluorescein isothiocyanate

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanosulfonic acid

MPM-2:

Mitotic phosphoprotein monoclonal-2

PARP:

Poly-ADP-ribose polymerase

PBS:

Phosphate buffered saline

PI:

Propidium iodide

PMSF:

Phenylmethylsulfonyl fluoride

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TUNEL:

Terminal deoxynucleotidyl transferas-mediated deoxyuridine triphosphate nick-end labeling

zVAD.fmk:

N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethyl ketone

zVDVAD.fmk:

N-benzyloxycarbonyl-Val-Asp-Val-Ala-Asp(OMe)-fluoromethyl ketone

References

  1. Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313

    Article  PubMed  CAS  Google Scholar 

  2. Chu K, Teele N, Dewey MW, Albright N, Dewey WC (2004) Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14–3-3σ and CDKN1A (p21) knockout cell lines. Radiat Res 162:270–286

    Article  PubMed  CAS  Google Scholar 

  3. Michalakis J, Georgatos SD, Romanos J et al (2005) Micromolar taxol, with or without hyperthermia, induces mitotic catastrophe and cell necrosis in HeLa cells. Cancer Chemother Pharmacol 56:615–622

    Article  PubMed  CAS  Google Scholar 

  4. Vingeron A, Roninson IB, Gamelin E, Coqueret O (2005) Src inhibits adriamycin-induced senescence and G2 checkpoint arrest by blocking the induction of p21waf1. Cancer Res 65:8927–8935

    Article  CAS  Google Scholar 

  5. Ianzini F, Bertoldo A, Kosmacek EA, Philips SL, Mackey MA (2006) Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int 6:11

    Article  PubMed  CAS  Google Scholar 

  6. Ianzini F, Domann FE, Kosmacek EA, Phillips SL, Mackey MA (2007) Human glioblastoma U87MG cells transduced with dominant negative p53 (TP53) adenovirus construct undergo radiation-induced mitotic catastrophe. Radiat Res 168:183–192

    Article  PubMed  CAS  Google Scholar 

  7. Cohen-Jonathan E, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83

    Article  CAS  Google Scholar 

  8. Demarcq C, Bunch RT, Creswell D, Eastman A (1994) The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ 5:983–993

    PubMed  CAS  Google Scholar 

  9. Mansilla S, Priebe W, Portugal J (2006) Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5:53–60

    PubMed  CAS  Google Scholar 

  10. Cholody WM, Martelli S, Konopa J (1992) Chromophore-modified antineoplastic imidazoacridiones. Synthesis and activity against murine leukemias. J Med Chem 35:378–382

    Article  PubMed  CAS  Google Scholar 

  11. Kusnierczyk H, Cholody WM, Paradziej-Lukowicz J, Radzikowski C, Konopa J (1994) Experimental antitumor activity and toxicity of the selected triazolo- and imidazoacridinones. Arch Immunol Ther Exp 42:415–423

    CAS  Google Scholar 

  12. Burger AM, Double JA, Konopa J, Bibby MC (1996) Preclinical evaluation of novel imidazoacridinone derivatives with potent activity against experimental colorectal cancer. Br J Cancer 74:1369–1374

    PubMed  CAS  Google Scholar 

  13. Burger AM, Jenkins TC, Double JA, Bibby MC (1999) Cellular uptake, cytotoxicity and DNA-binding studies of the novel imidazoacridinone antineoplastic agent C-1311. Br J Cancer 81:367–375

    Article  PubMed  CAS  Google Scholar 

  14. Berger B, Marquardt H, Westendorf J (1996) Pharmacological and toxicological aspects of new imidazoacridinone antitumour agents. Cancer Res 56:2094–2104

    PubMed  CAS  Google Scholar 

  15. Dziegielewski J, Slusarski B, Kontz A, Skladanowski A, Konopa J (2002) Intercalation of imidazoacridinones to DNA and its relevance to cytotoxic and antitumour activity. Biochem Pharmacol 63:1653–1662

    Article  PubMed  CAS  Google Scholar 

  16. Dziegielewski J, Konopa J (1998) Characterization of covalent binding to DNA of antitumor imidazoacridinone C-1311, after metabolic activation. Ann Oncol 9(Suppl.1):137

    Google Scholar 

  17. Dziegielewski J, Konopa J (1996) Interstrand crosslinking of DNA induced in tumor cells by a new group of antitumor imidazoacridinones. Proc Amer Assoc Cancer Res 37:410

    Google Scholar 

  18. Konopa J, Koba M, Dyrcz A (2005) Interstrand crosslinking of DNA by C-1311 (Symadex) and other imidazoacridinones. Proc Amer Assoc Cancer Res 46:1382

    Google Scholar 

  19. Skladanowski A, Plisov SY, Konopa J, Larsen AK (1996) Inhibition of DNA topoisomersae II by imidazoacridinones, new antineoplastic agents with strong activity against solid tumors. Mol Pharmacol 49:772–780

    PubMed  CAS  Google Scholar 

  20. Augustin E, Wheatley DN, Lamb J, Konopa J (1996) Imidazoacridinones arrest cell-cycle progression in the G2 phase of L1210 cells. Cancer Chemother Pharmacol 38:39–44

    Article  PubMed  CAS  Google Scholar 

  21. Augustin E, Konopa J (1996) Imidazoacridinones induce apoptosis in murine leukemia L1210 cells. Fol Cytochem Cytobiol 34:56

    Google Scholar 

  22. Zaffaroni N, De Marco C, Villa R, Riboldi S, Daidone MG, Double JA (2001) Cell growth inhibition, G2M cell cycle arrest and apoptosis induced by the imidazoacridinone C-1311 in human tumour cell lines. Eur J Cancer 37:1953–1962

    Article  PubMed  CAS  Google Scholar 

  23. Hyzy M, Bozko P, Konopa J, Skladanowski A (2005) Antitumour imidazoacridinone C-1311 induces cell death by mitotic catastrophe in human colon carcinoma cells. Biochem Pharmacol 69:801–809

    Article  PubMed  CAS  Google Scholar 

  24. Augustin E, Moś-Rompa A, Skwarska A, Witkowski JM, Konopa J (2006) Induction of G2/M phase arrest and apoptosis of human leukemia cells by potent antitumor triazoloacridinone C-1305. Biochem Pharmacol 72:1668–1679

    Article  PubMed  CAS  Google Scholar 

  25. Mansila S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6:589–602

    Article  Google Scholar 

  26. Davis FM, Tsao TY, Fowler SK, Rao PN (1983) Monoclonal antibodies to mitotic cells. Proc Natl Acad Sci 80:2926–2930

    Article  PubMed  CAS  Google Scholar 

  27. Borgne A, Meijer L (1996) Sequential dephosphorylation of p34cdc2 on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem 271:27847–27854

    Article  PubMed  CAS  Google Scholar 

  28. Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW (1990) Cyclin activation of p34cdc2. Cell 63:1013–1024

    Article  PubMed  CAS  Google Scholar 

  29. Koopman G, Reutelingsperger C, Kuijten G, Keehnen R, Pals S, Van Oers M (1994) Annexin V for flow cytometric detection of phosphatydilserine expression on B cells undergoing apoptosis. Blood 84:1414–1420

    Google Scholar 

  30. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with engoeneous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  31. Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis. Apoptosis 8:115–128

    Article  PubMed  CAS  Google Scholar 

  32. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess δ ψ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  PubMed  CAS  Google Scholar 

  33. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspase-2, -3, -6, -7, -8, and -10 i a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  34. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    Article  PubMed  CAS  Google Scholar 

  35. Candé C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734

    Article  PubMed  CAS  Google Scholar 

  36. Larsen AK, Escargueil AE, Skladanowski A (2003) From DNA damage to G2 arrest: the many roles of topoisomerase II. Prog Cell Cycle Res 5:295–300

    PubMed  Google Scholar 

  37. Bunz F, Detriaux A, Lengauer C et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  PubMed  CAS  Google Scholar 

  38. Clifford B, Beljin M, Stark GR, Taylor WR (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res 63:4074–4081

    PubMed  CAS  Google Scholar 

  39. Bhatia U, Danishefsky K, Traganos F, Darzynkiewicz Z (1995) Induction of apoptosis and cell cycle-specific change in expression of p53 in normal lymphocytes and MOLT-4 leukemic cells by nitrogen mustard. Clin Cancer Res 1:873–880

    PubMed  CAS  Google Scholar 

  40. Rodrigues NR, Rowan A, Smith ME et al (1990) P53 mutations in colorectal cancer. Proc Natl Acad Sci USA 87:7555–7559

    Article  PubMed  CAS  Google Scholar 

  41. Kosakowska-Cholody T, Cholody WM, Monks A, Woynarowska BA, Michejda CJ (2005) WMC-79, a potent agent against colon cancers, induces apoptosis through a p53-dependent pathway. Mol Cancer Ther 4:1617–1627

    Article  PubMed  CAS  Google Scholar 

  42. Lamb J, Wheatley DN (1996) Cell killing by novel imidazoacridinone antineoplastic agent, C-1311, is inhibited at higher drug concentrations coincident with dose-differentiated cell cycle perturbations. Brit J Cancer 74:1359–1368

    PubMed  CAS  Google Scholar 

  43. Ruth AC, Roninson IB (2000) Effects of the multidrug transporter P-glycoprotein on cellular responses to ionizing radiation. Cancer Res 60:2576–2578

    PubMed  CAS  Google Scholar 

  44. Eom YW, Kim MA, Park SS et al (2005) Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene 24:4765–4777

    Article  PubMed  CAS  Google Scholar 

  45. Castedo M, Perfettini JL, Roumier T et al (2004) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362–4370

    Article  PubMed  CAS  Google Scholar 

  46. Andreassen PR, Lacroix FB, Lohez OD, Margolis RL (2001) Neither p21WAF1 nor 14–3-3σ prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res 61:7660–7668

    PubMed  CAS  Google Scholar 

  47. Ivanov A, Cragg MS, Erenpreisa J, Emzinsh D, Lukman H, Illidge TM (2003) Endopolyploid cells produced after severe genotoxic damage have the potential to repair DNA double strand breaks. J Cell Sci 116:4095–4106

    Article  PubMed  CAS  Google Scholar 

  48. Liang H, Salinas RA, Leal BZ et al (2004) Caspase-mediated apoptosis and caspase-independent cell death induced by irofulven in prostate cancer cells. Mol Cancer Ther 3:1385–1396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Barbara Horowska for re-synthesis of C-1311 for this study. We also thank Dr. Jan M. Woynarowski for critical reading of the article, insightful comments, and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Konopa.

Additional information

This work was partially supported by Xanthus Pharmaceuticals, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skwarska, A., Augustin, E. & Konopa, J. Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311. Apoptosis 12, 2245–2257 (2007). https://doi.org/10.1007/s10495-007-0144-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0144-y

Keywords

Navigation