Skip to main content
Log in

Regulation of the Oligopeptide Transporter, PEPT-1, in DSS-Induced Rat Colitis

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The effect of colitis induced with dextran sodium sulfate (DSS) in rats on the bioavailability of drugs transported by the oligopeptide transporter PepT-1 was analyzed by studying the pharmacokinetics of PepT-1 substrates: cephalexin and valacyclovir, the prodrug of antiviral acyclovir. Western blot, immunohistochemistry, and real-time PCR were used to determine the PepT-1 protein and gene expression. We observed (1) no significant modification of PepT-1 expression in the duodenum and jejunum; (2) a slight decrease in both PepT-1 mRNA (50%) and protein expression (25%) in the ileum following DSS challenge; and (3) ectopic PepT-1 immunostaining in regenerative hyperplasia segments in the distal colon from DSS-treated rats where focal inflammation is localized. However, no modification of pharmacokinetic parameters (C max, T max, AUC) of cephalexin or acyclovir was detected. In conclusion, DSS-induced rat colitis did not alter PepT-1 substrate bioavailability despite certain modifications in PepT-1 expression profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adibi SA (1971) Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest 50:2266–2275

    PubMed  CAS  Google Scholar 

  2. Adibi SA (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340

    Article  PubMed  CAS  Google Scholar 

  3. Fei YJ, Kanai Y, Nussberger S, et al. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368:563–566

    Article  PubMed  CAS  Google Scholar 

  4. Borner V, Fei YJ, Hartrodt B, et al. (1998) Transport of amino acid aryl amides by the intestinal H+/peptide cotransport system, PEPT1. Eur J Biochem 255:698–702

    Article  PubMed  CAS  Google Scholar 

  5. Ganapathy ME, Brandsch M, Prasad PD, Ganapathy V, Leibach FH (1995) Differential recognition of beta-lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J Biol Chem 270:25672–25677

    Article  PubMed  CAS  Google Scholar 

  6. Thwaites DT, Cavet M, Hirst BH, Simmons NL (1995) Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. Br J Pharmacol 114:981–986

    PubMed  CAS  Google Scholar 

  7. Kitagawa S, Takeda J, Kaseda Y, Sato S (1997) Inhibitory effects of angiotensin-converting enzyme inhibitor on cefroxadine uptake by rabbit small intestinal brush border membrane vesicles. Biol Pharm Bull 20:449–451

    PubMed  CAS  Google Scholar 

  8. Inui K, Tomita Y, Katsura T, et al. (1992) H+ coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes. J Pharmacol Exp Ther 260:482–486

    PubMed  CAS  Google Scholar 

  9. Han HK, Oh DM, Amidon GL (1998) Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPEPT1 cells overexpressing a human peptide transporter. Pharm Res 15:1382–1386

    Article  PubMed  CAS  Google Scholar 

  10. Ganapathy ME, Huang W, Wang H, Ganapathy V, Leibach FH (1998) Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem Biophys Res Commun 246:470–475

    Article  PubMed  CAS  Google Scholar 

  11. Sugawara M, Huang W, Fei YJ, et al. (2000) Transport of valgancyclovir, a gancyclovir prodrug, via peptide transporters PEPT1 and PEPT2. J Pharm Sci 89:781–789

    Article  PubMed  CAS  Google Scholar 

  12. Topouchian A, Kapel N, Larue-Achagiotis C, et al. (2005) Cryptosporidium infection impairs growth and muscular protein synthesis in suckling rats. Parasitol Res 96:326–330

    Article  PubMed  Google Scholar 

  13. Topouchian A, Huneau JF, Barbot L, et al. (2003) Evidence for the absence of an intestinal adaptive mechanism to compensate for C. parvum-induced amino acid malabsorption in suckling rats. Parasitol Res 91:197–203

    Article  PubMed  CAS  Google Scholar 

  14. Barbot L, Topouchian A, Capet C, et al. (2001) [Cryptosporidium parvum: functional study of the intestinal malabsorption syndrome]. Ann Pharm Fr 59:305–311

    PubMed  CAS  Google Scholar 

  15. Barbot L, Windsor E, Rome S, et al. (2003) Intestinal peptide transporter PepT1 is over–expressed during acute cryptosporidiosis in suckling rats as a result of both malnutrition and experimental parasite infection. Parasitol Res 89:364–370

    PubMed  CAS  Google Scholar 

  16. Garrido AB Jr, Freeman HJ, Chung YC, Kim YS (1979) Amino acid and peptide absorption after proximal small intestinal resection in the rat. Gut 20:114–120

    PubMed  CAS  Google Scholar 

  17. Avissar NE, Ziegler TR, Wang HT, et al. (2001) Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enteretomy. JPEN J Parenter Enteral Nutr 25:65–72

    Article  PubMed  CAS  Google Scholar 

  18. Ziegler TR, Fernandez-Estivariz C, Gu LH, et al. (2002) Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 75:922–930

    PubMed  CAS  Google Scholar 

  19. Merlin D, Si-Tahar M, Sitaraman SV, et al. (2001) Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 120:1666–1679

    Article  PubMed  CAS  Google Scholar 

  20. Ford D, Howard A, Hirst BH (2003) Expression of the peptide transporter hPepT1 in human colon: a potential route for colonic protein nitrogen and drug absorption. Histochem Cell Biol 119:37–43

    PubMed  CAS  Google Scholar 

  21. Gaudio E, Taddei G, Vetuschi A, et al. (1999) Dextran sulfate sodium (DSS) colitis in rats: clinical, structural, and ultrastructural aspects. Dig Dis Sci 44:1458–1475

    Article  PubMed  CAS  Google Scholar 

  22. Buyse M, Radeva G, Bado A, Farinotti R (2005) Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochem Pharmacol 69:1745–1754

    Article  PubMed  CAS  Google Scholar 

  23. Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 6:1344–1350

    Google Scholar 

  24. Tanaka H, Miyamoto KI, Morita K, et al. (1998) Regulation of the PepT1 peptide transporter in the rat small intestine in response to 5-fluorouracil-induced injury. Gastroenterology 114:714–723

    Article  PubMed  CAS  Google Scholar 

  25. Ogihara H, Saito H, Shin BC, et al. (1996) Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem Biophys Res Commun 220:848–852

    Article  PubMed  CAS  Google Scholar 

  26. Naruhashi K, Sai Y, Tamai I, Suzuki N, Tsuji A (2002) PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxil longitudinally in the rat intestine. Pharm Res 19:1417–1423

    Article  PubMed  CAS  Google Scholar 

  27. Miyamoto K, Shiraga T, Morita K, et al. (1996) Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim Biophys Acta 1305:34–38

    PubMed  Google Scholar 

  28. Shen H, Smith DE, Brosius FC 3rd (2001) Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatr Res 49:789–795

    Article  PubMed  CAS  Google Scholar 

  29. Sai Y, Tamai I, Sumikawa H, et al. (1996) Immunolocalization and pharmacological relevance of oligopeptide transporter PepT1 in intestinal absorption of beta-lactam antibiotics. FEBS Lett 392:25–29

    Article  PubMed  CAS  Google Scholar 

  30. Herrera-Ruiz D, Wang Q, Gudmundsson OS, et al. (2001) Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. AAPS PharmSci 3:E9

    Article  PubMed  CAS  Google Scholar 

  31. Hu M, Amidon GL (1988) Passive and carrier-mediated intestinal absorption components of captopril. J Pharm Sci 77:1007–1011

    Article  PubMed  CAS  Google Scholar 

  32. Buyse M, Tsocas A, Walker F, Merlin D, Bado A (2002) PepT1-mediated fMLP transport induces intestinal inflammation in vivo. Am J Physiol Cell Physiol 283:C1795–C1800

    PubMed  CAS  Google Scholar 

  33. Jurjus AR, Khoury NN, Reimund JM (2004) Animal models of inflammatory bowel disease. J Pharmacol Toxicol Methods 50:81–92

    Article  PubMed  CAS  Google Scholar 

  34. Vavricka SR, Musch MW, Fujiya M, et al. (2006) Tumor necrosis factor-alpha and interferon-gamma increase PepT1 expression and activity in the human colon carcinoma cell line Caco-2/bbe and in mouse intestine. Pflugers Arch 452:71–80

    Article  PubMed  CAS  Google Scholar 

  35. Sundaram U, Wisel S, Coon S (2005) Mechanism of inhibition of proton: dipeptide co-transport during chronic enteritis in the mammalian small intestine. Biochim Biophys Acta 2:134–140

    Google Scholar 

  36. Balimane PV, Tamai I, Guo A, et al. (1998) Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun 250:246–251

    Article  PubMed  CAS  Google Scholar 

  37. Guo A, Hu P, Balimane PV, Leibach FH, Sinko PJ (1999) Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. J Pharmacol Exp Ther 289:448–454

    PubMed  CAS  Google Scholar 

  38. Anand BS, Katragadda S, Mitra AK (2004) Pharmacokinetics of novel dipeptide ester prodrugs of acyclovir after oral administration: intestinal absorption and liver metabolism. J Pharmacol Exp Ther 311:659–667

    Article  PubMed  CAS  Google Scholar 

  39. Sinko PJ, Balimane PV (1998) Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir. 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm Drug Dispos 19:209–217

    Article  PubMed  CAS  Google Scholar 

  40. Soul-Lawton J, Seaber E, On N, et al. (1995) Absolute bioavailability and metabolic disposition of valacyclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother 39:2759–2764

    PubMed  CAS  Google Scholar 

  41. Burnette TC, Harrington JA, Reardon JE, Merrill BM, de Miranda P (1995) Purification and characterization of a rat liver enzyme that hydrolyzes valacyclovir, the L-valyl ester prodrug of acyclovir. J Biol Chem 270:15827–15831

    Article  PubMed  CAS  Google Scholar 

  42. Kim I, Chu XY, Kim S, et al. (2003) Identification of a human valacyclovirase: biphenyl hydrolase-like protein as valacyclovir hydrolase. J Biol Chem 278:25348–25356

    Article  PubMed  CAS  Google Scholar 

  43. Burnette TC, de Miranda P (1994) Metabolic disposition of the acyclovir prodrug valacyclovir in the rat. Drug Metab Dispos 22:60–64

    PubMed  CAS  Google Scholar 

  44. Berlioz F, Lepere-Prevot B, Julien S, et al. (2000) Chronic nifedipine dosing enhances cephalexin bioavailability and intestinal absorption in conscious rats. Drug Metab Dispos 28:1267–1269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Buyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radeva, G., Buyse, M., Hindlet, P. et al. Regulation of the Oligopeptide Transporter, PEPT-1, in DSS-Induced Rat Colitis. Dig Dis Sci 52, 1653–1661 (2007). https://doi.org/10.1007/s10620-006-9667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9667-2

Keywords

Navigation