Skip to main content
Log in

Platelet-Activating Factor Involvement in Thioacetamide-Induced Experimental Liver Fibrosis and Cirrhosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Platelet-activating factor (PAF) is a potent lipid inflammatory mediator acting on cells through its specific receptor. Plasma PAF-acetylhydrolase (PAF-AH) is the main enzyme that inactivates PAF in blood, participating in its homeostasis. The objective of this study was to investigate the involvement of PAF in the liver fibrotic process using an experimental animal model. Liver fibrosis was induced in adult male Wistar rats by administration of thioacetamide (TAA) in drinking water (300 mg/l) for three months. The animals were sacrificed at time 0 (control group) and after 1, 2, and 3 months. PAF levels in liver and blood and PAF-AH activity in plasma were determined. Liver histopathological examination was also performed. TAA administration resulted in progressively increased liver fibrosis, leading finally to the formation of cirrhotic nodules in the liver. Throughout the experiment PAF levels in liver tissue remained stable. “Total” (“free” plus “bound”) PAF levels in blood decreased, reaching statistically significant differences in the first and third months compared with the control group (P < 0.05). “Free” PAF levels in blood were higher at one month (P < 0.05) and decreased gradually thereafter. In all treated groups, “bound” PAF levels in blood decreased whereas plasma PAF-AH activity increased (P < 0.05) compared with the control group. Our data indicated alterations of PAF levels in blood and PAF-AH activity during fibrosis induction, implicating participation of PAF in the liver fibrotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.

    CAS  PubMed  Google Scholar 

  2. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38:S38–S53. doi:10.1016/S0168-8278(02)00429-4.

    Article  PubMed  Google Scholar 

  3. Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis. 2004;36:231–242. doi:10.1016/j.dld.2004.01.003.

    Article  CAS  PubMed  Google Scholar 

  4. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology. 2004;39:273–278. doi:10.1002/hep.20051.

    Article  PubMed  Google Scholar 

  5. Ramadori G, Saile B. Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific, this is the question. Gastroenterology. 2004;127:997–1000. doi:10.1053/j.gastro.2004.07.041.

    Article  CAS  PubMed  Google Scholar 

  6. Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct. 2003;28:105–112. doi:10.1247/csf.28.105.

    Article  CAS  PubMed  Google Scholar 

  7. Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med. 2000;21:49–98. doi:10.1016/S0098-2997(00)00004-2.

    Article  CAS  PubMed  Google Scholar 

  8. Tsukamoto H, Matsuoka M, French SW. Experimental models of hepatic fibrosis: a review. Semin Liver Dis. 1990;10:56–65. doi:10.1055/s-2008-1040457.

    Article  CAS  PubMed  Google Scholar 

  9. Ledda-Columbano GM, Coni P, Curto M, et al. Induction of two different modes of cell death, apoptosis and necrosis, in rat liver after a single dose of thioacetamide. Am J Pathol. 1991;139:1099–1109.

    CAS  PubMed  Google Scholar 

  10. Hunter AL, Holscher MA, Neal RA. Thioacetamide-induced hepatic necrosis. I. Involvement of the mixed-function oxidase enzyme system. J Pharmacol Exp Ther. 1977;200:439–448.

    CAS  PubMed  Google Scholar 

  11. Torres MI, Fernandez MI, Gil A, Rios A. Dietary nucleotides have cytoprotective properties in rat liver damaged by thioacetamide. Life Sci. 1998;62:13–22. doi:10.1016/S0024-3205(97)01033-3.

    Article  CAS  PubMed  Google Scholar 

  12. Constantinou M, Theocharis SE, Mikros E. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats. Toxicol Appl Pharmacol. 2007;218:11–19. doi:10.1016/j.taap.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  13. Chieli E, Malvaldi G. Role of the microsomal FAD-containing monooxygenase in the liver toxicity of thioacetamide S-oxide. Toxicology. 1984;31:41–52. doi:10.1016/0300-483X(84)90154-9.

    Article  CAS  PubMed  Google Scholar 

  14. Low TY, Leow CK, Salto-Tellez M, Chung MC. A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers. Proteomics. 2004;4:3960–3974. doi:10.1002/pmic.200400852.

    Article  CAS  PubMed  Google Scholar 

  15. Chilakapati J, Shankar K, Korrapati MC, Hill RA, Mehendale HM. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab Dispos. 2005;33:1877–1885.

    CAS  PubMed  Google Scholar 

  16. Lee JW, Shin KD, Lee M, et al. Role of metabolism by flavin-containing monooxygenase in thioacetamide-induced immunosuppression. Toxicol Lett. 2003;136:163–172. doi:10.1016/S0378-4274(02)00333-8.

    Article  CAS  PubMed  Google Scholar 

  17. Ekstrom G, Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol. 1989;38:1313–1319. doi:10.1016/0006-2952(89)90338-9.

    Article  CAS  PubMed  Google Scholar 

  18. Sanz N, Díez-Fernandez C, Andres D, Cascales M. Hepatotoxicity and aging: endogenous antioxidant systems in hepatocytes from 2-, 6-, 12-, 18- and 30-month-old rats following a necrogenic dose of thioacetamide. Biochim Biophys Acta. 2002;1587:12–20.

    CAS  PubMed  Google Scholar 

  19. So EC, Wong KL, Huang TC, Tasi SC, Liu CF. Tetramethylpyrazine protects mice against thioacetamide-induced acute hepatotoxicity. J Biomed Sci. 2002;9:410–414. doi:10.1007/BF02256534.

    Article  CAS  PubMed  Google Scholar 

  20. Díez-Fernandez C, Bosca L, Fernandez-Simon L, Alvarez A, Cascales M. Relationship between genomic DNA ploidy and parameters of liver damage during necrosis and regeneration induced by thioacetamide. Hepatology. 1993;18:912–918.

    Article  PubMed  Google Scholar 

  21. Ramaiah SK, Apte U, Mehendale HM. Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab Dispos. 2001;29:1088–1095.

    CAS  PubMed  Google Scholar 

  22. Wang T, Shankar K, Ronis MJ, Mehendale HM. Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. J Pharmacol Exp Ther. 2000;294:473–479.

    CAS  PubMed  Google Scholar 

  23. Demopoulos CA, Pinckard RN, Hanahan DJ. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979;254:9355–9358.

    CAS  PubMed  Google Scholar 

  24. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM. Platelet-activating factor and related lipid mediators. Annu Rev Biochem. 2000;69:419–445. doi:10.1146/annurev.biochem.69.1.419.

    Article  CAS  PubMed  Google Scholar 

  25. Imaizumi TA, Stafforini DM, Yamada Y, McIntyre TM, Prescott SM, Zimmerman GA. Platelet-activating factor: a mediator for clinicians. J Intern Med. 1995;238:5–20.

    Article  CAS  PubMed  Google Scholar 

  26. Peplow PV. Regulation of platelet-activating factor (PAF) activity in human diseases by phospholipase A2 inhibitors, PAF acetylhydrolases, PAF receptor antagonists and free radical scavengers. Prostaglandins Leukot Essent Fatty Acids. 1999;61:65–82. doi:10.1054/plef.1999.0038.

    Article  CAS  PubMed  Google Scholar 

  27. Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993;292:617–629.

    CAS  PubMed  Google Scholar 

  28. Tjoelker LW, Stafforini DM. Platelet-activating factor acetylhydrolases in health and disease. Biochim Biophys Acta. 2000;1488:102–123.

    CAS  PubMed  Google Scholar 

  29. Karasawa K, Harada A, Satoh N, Inoue K, Setaka M. Plasma platelet-activating factor-acetylhydrolase (PAF-AH). Prog Lipid Res. 2003;42:93–114. doi:10.1016/S0163-7827(02)00049-8.

    Article  CAS  PubMed  Google Scholar 

  30. McIntyre TM, Zimmerman GA, Prescott SM. Biologically active oxidized phospholipids. J Biol Chem. 1999;274:25189–25192. doi:10.1074/jbc.274.36.25189.

    Article  CAS  PubMed  Google Scholar 

  31. Marathe GK, Prescott SM, Zimmerman GA, McIntyre TM. Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc Med. 2001;11:139–142. doi:10.1016/S1050-1738(01)00100-1.

    Article  CAS  PubMed  Google Scholar 

  32. Karidis NP, Kouraklis G, Theocharis SE. Platelet-activating factor in liver injury: a relational scope. World J Gastroenterol. 2006;12:3695–3706.

    PubMed  Google Scholar 

  33. Caramelo C, Fernandez-Gallardo S, Santos JC, et al. Increased levels of platelet-activating factor in blood from patients with cirrhosis of the liver. Eur J Clin Invest. 1987;17:7–11. doi:10.1111/j.1365-2362.1987.tb01218.x.

    Article  CAS  PubMed  Google Scholar 

  34. Moreno P, Gijon MA, Fradera R, et al. Changes in peripheral blood levels of platelet-activating factor after orthotopic liver transplantation. Transplant Proc. 1993;25:2642–2653.

    CAS  PubMed  Google Scholar 

  35. Sugatani J, Miwa M, Komiyama Y, Murakami T. Quantitative analysis of platelet-activating factor in human plasma. Application to patients with liver cirrhosis and disseminated intravascular coagulation. J Immunol Methods. 1993;166:251–261. doi:10.1016/0022-1759(93)90366-F.

    Article  CAS  PubMed  Google Scholar 

  36. Laffi G, Carloni V, Baldi E, et al. Impaired superoxide anion, platelet-activating factor, and leukotriene B4 synthesis by neutrophils in cirrhosis. Gastroenterology. 1993;105:170–177.

    CAS  PubMed  Google Scholar 

  37. Kamisako T, Takeuchi K, Ito T, Tamaki S, Kosaka T, Adachi Y. Serum platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with hyperbilirubinemic hepatobiliary disease. Hepatol Res. 2003;26:23–27. doi:10.1016/S1386-6346(03)00006-8.

    Article  CAS  PubMed  Google Scholar 

  38. Meade CJ, Metcalfe S, Svvennsen R, et al. Serum PAF acetylhydrolase and chronic cholestasis. Lancet. 1991;338:1016–1017. doi:10.1016/0140-6736(91)91876-V.

    Article  CAS  PubMed  Google Scholar 

  39. Villamediana LM, Sanz E, Fernandez-Gallardo S, et al. Effects of the platelet-activating factor antagonist BN 52021 on the hemodynamics of rats with experimental cirrhosis of the liver. Life Sci. 1986;39:201–205. doi:10.1016/0024-3205(86)90531-X.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Nemoto EM, Harvey SA, Subbotin VM, Gandhi CR. Increased hepatic platelet-activating factor (PAF) and PAF receptors in carbon tetrachloride induced liver cirrhosis. Gut. 2004;53:877–883. doi:10.1136/gut.2003.024893.

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Harvey SA, Gandhi CR. Kupffer cells are a major source of increased platelet-activating factor in the CCl4-induced cirrhotic rat liver. J Hepatol. 2003;39:200–207. doi:10.1016/S0168-8278(03)00229-0.

    Article  CAS  PubMed  Google Scholar 

  42. Gribilas G, Zarros A, Zira A, et al. Involvement of hepatic stimulator substance in experimentally induced fibrosis and cirrhosis in the rat. Dig Dis Sci. 2009 (in press).

  43. Muller A, Machnik F, Zimmermann T, Schubert H. Thioacetamide-induced cirrhosis-like liver lesions in rats–usefulness and reliability of this animal model. Exp Pathol. 1988;34:229–236.

    CAS  PubMed  Google Scholar 

  44. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi:10.1016/0003-2697(79)90738-3.

    Article  CAS  PubMed  Google Scholar 

  45. Lowry O, Rosebrough N, Farr A, Randall R. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–275.

    CAS  PubMed  Google Scholar 

  46. Demopoulos CA, Andrikopoulos NK, Antonopoulou S. A simple and precise method for the routine determination of platelet-activating factor in blood and urine. Lipids. 1994;29:305–309. doi:10.1007/BF02536336.

    Article  CAS  PubMed  Google Scholar 

  47. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.

    CAS  PubMed  Google Scholar 

  48. Karantonis HC, Antonopoulou S, Perrea DN, et al. In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr Metab Cardiovasc Dis. 2006;16:174–185. doi:10.1016/j.numecd.2005.07.003.

    Article  CAS  PubMed  Google Scholar 

  49. Carvalho-Tavares J, Fox-Robichaud A, Kubes P. Assessment of the mechanism of juxtacrine activation and adhesion of leukocytes in liver microcirculation. Am J Physiol. 1999;276:G828–G834.

    CAS  PubMed  Google Scholar 

  50. Sanz N, Díez-Fernandez C, Fernandez-Simon L, Alvarez A, Cascales M. Relationship between antioxidant systems, intracellular thiols and DNA ploidy in liver of rats during experimental cirrhogenesis. Carcinogenesis. 1995;16:1585–1593. doi:10.1093/carcin/16.7.1585.

    Article  CAS  PubMed  Google Scholar 

  51. Abul H, Mathew TC, Dashti HM, Al-Bader A. Level of superoxide dismutase, glutathione peroxidase and uric acid in thioacetamide-induced cirrhotic rats. Anat Histol Embryol. 2002;31:66–71. doi:10.1046/j.1439-0264.2002.00359.x.

    Article  CAS  PubMed  Google Scholar 

  52. Liapikos TA, Antonopoulou S, Karabina SP, Tsoukatos DC, Demopoulos CA, Tselepis AD. Platelet-activating factor formation during oxidative modification of low-density lipoprotein when PAF-acetylhydrolase has been inactivated. Biochim Biophys Acta. 1994;1212:353–360.

    CAS  PubMed  Google Scholar 

  53. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 2001;21:397–416. doi:10.1055/s-2001-17554.

    Article  CAS  PubMed  Google Scholar 

  54. Hattori K, Hattori M, Adachi H, Tsujimoto M, Arai H, Inoue K. Purification and characterization of platelet-activating factor acetylhydrolase II from bovine liver cytosol. J Biol Chem. 1995;270:22308–22313. doi:10.1074/jbc.270.38.22308.

    Article  CAS  PubMed  Google Scholar 

  55. Bautista AP, Spitzer JJ. Platelet-activating factor stimulates and primes the liver, Kupffer cells and neutrophils to release superoxide anion. Free Radic Res Commun. 1992;17:195–209. doi:10.3109/10715769209068166.

    Article  CAS  PubMed  Google Scholar 

  56. Gardner CR, Laskin JD, Laskin DL. Platelet-activating factor-induced calcium mobilization and oxidative metabolism in hepatic macrophages and endothelial cells. J Leukoc Biol. 1993;53:190–196.

    CAS  PubMed  Google Scholar 

  57. Gardner CR, Laskin JD, Laskin DL. Distinct biochemical responses of hepatic macrophages and endothelial cells to platelet-activating factor during endotoxemia. J Leukoc Biol. 1995;57:269–274.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from ELKE (G. Kouraklis) and the Medical School (S. Theocharis) of the National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatios E. Theocharis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karantonis, H.C., Gribilas, G., Stamoulis, I. et al. Platelet-Activating Factor Involvement in Thioacetamide-Induced Experimental Liver Fibrosis and Cirrhosis. Dig Dis Sci 55, 276–284 (2010). https://doi.org/10.1007/s10620-009-0745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0745-0

Keywords

Navigation