Skip to main content
Log in

A Role of the Aryl Hydrocarbon Receptor in Attenuation of Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The aryl hydrocarbon receptor (AhR), which is a member of the basic helix-loop-helix/Per-Arnt-Sim homology superfamily, plays an important role in multiple biological functions, and AhR knockout (AhR KO) animals suffer from a variety of organ disorders including a decline in the efficacy of their immune system. In addition, AhR activation is known to aid the maintenance of homeostasis in vivo. In this study, we investigated whether AhR is functionally associated with intestinal immunity.

Methods and Results

In in vivo experiments, it was found that dextran sodium sulfate (DSS)-evoked colitis was more severe in AhR KO mice than in C57BL/6J wild type mice. It was also revealed that the administration of DSS increased the expression levels of AhR and CYP1A1 mRNA in the colon epithelium. In addition, oral administration of β-naphthoflavone (βNF), a non-toxic agonist of AhR, suppressed the pathogenesis of DSS-induced colitis. βNF also attenuated DSS-induced colitis. In cell culture experiments, downregulation of AhR in human colon carcinoma SW480 cells enhanced the inflammatory responses evoked by lipopolysaccharide (LPS), and furthermore, AhR activation attenuated LPS-induced inflammatory responses, suggesting that AhR expressing intestinal epithelial cells are involved in the prevention of colitis.

Conclusions

Our findings about the potential role of AhR activators in epithelial immune regulation aid our understanding of mucosal homeostasis and inflammatory bowl disease (IBD) and suggest that AhR activation has therapeutic value for the treatment of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aranda R, Sydora BC, McAllister PL, Binder SW, et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD41, CD45RBhigh T cells to SCID recipients. J Immunol. 1997;158:3464–3473.

    PubMed  CAS  Google Scholar 

  2. Rath HC, Schultz M, Freitag R, Dieleman LA, et al. Different subsets of enteric bacteria in-duce and perpetuate experimental colitis in rats and mice. Infect Immun. 2001;69:2277–2285.

    Article  PubMed  CAS  Google Scholar 

  3. Mizoguchi A, Mizoguchi E. Inflammatory bowel disease, past, present and future: lessons from animal models. J Gastroenterol. 2008;43:1–17.

    Article  PubMed  Google Scholar 

  4. Zimmerman NP, Vongsa RA, Wendt MK, Dwinell MB. Chemokines and chemokine receptors in mucosal homeostasis at the intestinal epithelial barrier in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:1000–1011.

    Article  PubMed  Google Scholar 

  5. Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117:514–521.

    Article  PubMed  CAS  Google Scholar 

  6. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    PubMed  CAS  Google Scholar 

  7. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–249.

    PubMed  CAS  Google Scholar 

  8. Ishida T, Yoshida M, Arita M, Nishitani Y, et al. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm Bowel Dis. 2010;16:87–95.

    PubMed  Google Scholar 

  9. Ruyssers NE, De Winter BY, De Man JG, Ruyssers ND, et al. Schistosoma mansoni proteins attenuate gastrointestinal motility disturbances during experimental colitis in mice. World J Gastroenterol. 2010;16:703–712.

    Article  PubMed  CAS  Google Scholar 

  10. Elliott DE, Li J, Blum A, Metwali A, et al. Exposure to schistosome eggs protects mice from TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2003;284:385–391.

    Google Scholar 

  11. Pini M, Gove ME, Fayad R, Cabay RJ, Fantuzzi G. Adiponectin deficiency does not affect development and progression of spontaneous colitis in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G382–G387.

    Article  PubMed  CAS  Google Scholar 

  12. Paul G, Schäffler A, Neumeier M, Fürst A, et al. Profiling adipocytokine secretion from creeping fat in Crohn’s disease. Inflamm Bowel Dis. 2006;12:471–477.

    Article  PubMed  Google Scholar 

  13. Denis M, Cuthill S, Wikström AC, Poellinger L, Gustafsson JA. Association of the dioxin receptor with the Mr 90,000 heat shock protein: a structural kinship with the glucocorticoid receptor. Biochem Biophys Res Commun. 1988;155:801–807.

    Article  PubMed  CAS  Google Scholar 

  14. Fujii-Kuriyama Y, Ema M, Mimura J, Sogawa K. Ah receptor: a novel ligand-activated transcription factor. Exp Clin Immunogenet. 1994;1:65–74.

    Google Scholar 

  15. Okino ST, Whitlock JP Jr. The aromatic hydrocarbon receptor, transcription, and endocrine aspects of dioxin action. Vitam Horm. 2000;59:241–264.

    Article  PubMed  CAS  Google Scholar 

  16. Shimada T, Inoue K, Suzuki Y, Kawai T, et al. Arylhydrocarbon receptor-dependent induction of liver and lung cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic hydrocarbons and polychlorinated biphenyls in genetically engineered C57BL/6 J mice. Carcinogenesis. 2002;23:1199–1207.

    Article  PubMed  CAS  Google Scholar 

  17. Mimura J, Yamashita K, Nakamura K, Morita M, et al. Loss of teratogenic response to 2, 3, 7, 8-tetrachlorodibenzop-dioxin (TCDD) in mice lacking the Ah (dioxin) receptor. Genes Cells. 1997;2:645–654.

    Article  PubMed  CAS  Google Scholar 

  18. Shimizu Y, Nakatsuru Y, Ichinose M, Takahashi Y, et al. Benzopyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2000;97:779–782.

    Article  PubMed  CAS  Google Scholar 

  19. Thatcher TH, Maggirwar SB, Baglole CJ, Lakatos HF, et al. Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-kappaB component RelB. Am J Pathol. 2007;170:855–864.

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science. 1995;268:722–726.

    Article  PubMed  CAS  Google Scholar 

  21. Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci USA. 2009;106:13481–13486.

    Article  PubMed  CAS  Google Scholar 

  22. Shimada Y, Dewa Y, Ichimura R, Suzuki T, et al. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by beta-naphthoflavone. Toxicology. 2010;268:213–218.

    Article  PubMed  CAS  Google Scholar 

  23. Rhodes JC, Houston JB. Antipyrine metabolite kinetics in phenobarbital and beta-naphthoflavone-induced rats. Drug Metab Dispos. 1983;11:131–136.

    PubMed  CAS  Google Scholar 

  24. Negishi T, Kato Y, Ooneda O, Mimura J, et al. Effects of aryl hydrocarbon receptor signaling on the modulation of TH1/TH2 balance. J Immunol. 2005;175:7348–7356.

    PubMed  CAS  Google Scholar 

  25. Gasiewicz TA, Singh KP, Casado FL. The aryl hydrocarbon receptor has an important role in the regulation of hematopoiesis: implications for benzene-induced hematopoietic toxicity. Chem Biol Interact. 2010;184:246–251.

    Article  PubMed  CAS  Google Scholar 

  26. Sekine H, Mimura J, Oshima M, Okawa H, et al. Hypersensitivity of aryl hydrocarbon receptor-deficient mice to lipopolysaccharide-induced septic shock. Mol Cell Biol. 2009;29:6391–6400.

    Article  PubMed  CAS  Google Scholar 

  27. Furness SG, Whelan F. The pleiotropy of dioxin toxicity–xenobiotic misappropriation of the aryl hydrocarbon receptor’s alternative physiological roles. Pharmacol Ther. 2009;124:336–353.

    Article  PubMed  CAS  Google Scholar 

  28. Jux B, Kadow S, Esser C. Langerhans cell maturation and contact hypersensitivity are impaired in aryl hydrocarbon receptor-null mice. J Immunol. 2009;182:6709–6717.

    Article  PubMed  CAS  Google Scholar 

  29. McMillan BJ, Bradfield CA. The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol Pharmacol. 2007;72:487–498.

    Article  PubMed  CAS  Google Scholar 

  30. Teske S, Bohn AA, Hogaboam JP, Lawrence BP. Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection. Toxicol Sci. 2008;102:89–99.

    Article  PubMed  CAS  Google Scholar 

  31. Tian Y, Ke S, Denison MS, Rabson AB, Gallo MA. Ah receptor and NF-kappaB interactions, a potential mechanism for dioxin toxicity. J Biol Chem. 1999;274:510–515.

    Article  PubMed  CAS  Google Scholar 

  32. Jensen BA, Leeman RJ, Schlezinger JJ, Sherr DH. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells an immunotoxicology study. Environ Health. 2003;2:16.

    Article  PubMed  Google Scholar 

  33. Murray IA, Krishnegowda G, Dinatale BC, Flaveny C, et al. Development of a selective modulator of Aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem Res Toxicol. 2010;23:955–966.

    Article  PubMed  CAS  Google Scholar 

  34. Bankoti J, Rase B, Simones T, Shepherd DM. Functional and phenotypic effects of AhR activation in inflammatory dendritic cells. Toxicol Appl Pharmacol. 2010;246:18–28.

    Article  PubMed  CAS  Google Scholar 

  35. Platzer B, Richter S, Kneidinger D, Waltenberger D, et al. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J Immunol. 2009;183:66–74.

    Article  PubMed  CAS  Google Scholar 

  36. Kato Y, Negishi T, Furusako S, Mizuguchi K, Mochizuki H. An orally active Th1/Th2 balance modulator, M50367, suppresses Th2 differentiation of naïve Th cell in vitro. Cell Immunol. 2003;224:29–37.

    Article  PubMed  CAS  Google Scholar 

  37. Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci USA. 2008;105:9721–9726.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang L, Ma J, Takeuchi M, Usui Y, et al. Suppression of experimental autoimmune uveoretinitis by inducing differentiation of regulatory T cells via activation of aryl hydrocarbon receptor. Invest Ophthalmol Vis Sci. 2010;51:2109–2117.

    Article  PubMed  Google Scholar 

  39. Cherayil BJ. Indoleamine 2, 3-dioxygenase in intestinal immunity and inflammation. Inflamm Bowel Dis. 2009;15:1391–1396.

    Article  PubMed  Google Scholar 

  40. Zheng L, Riehl TE, Stenson WF. Regulation of colonic epithelial repair in mice by Toll-like receptors and hyaluronic acid. Gastroenterology. 2009;137:2041–2051.

    Article  PubMed  CAS  Google Scholar 

  41. Satoh Y, Ishiguro Y, Sakuraba H, Kawaguchi S, et al. Cyclosporine regulates intestinal epithelial apoptosis via TGF-beta-related signaling. Am J Physiol Gastrointest Liver Physiol. 2009;297:G514–G519.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by a grant for the Global COE Program “Global Center of Excellence for Education and Research on Signal Transduction Medicine in the Coming Generation” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (M.Y., T.A). This work was also supported by a grant for the Education Program for Specialized Clinicians as part of the Support Program for Improving Graduate School Education from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (K.F.). This work was partly supported by a grant from the program ‘Young researchers training program for promoting innovation’ of Special Coordination Fund for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (S.N., T.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furumatsu, K., Nishiumi, S., Kawano, Y. et al. A Role of the Aryl Hydrocarbon Receptor in Attenuation of Colitis. Dig Dis Sci 56, 2532–2544 (2011). https://doi.org/10.1007/s10620-011-1643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1643-9

Keywords

Navigation