Skip to main content

Advertisement

Log in

The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Imatinib is transported by P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP), however, the exact impact of these transporters on absorption, distribution, metabolism and excretion (ADME) of imatinib is not fully understood due to incomplete data. We have performed a comprehensive ADME study of imatinib given as single agent or in combination with the well known BCRP/P-gp inhibitors, elacridar and pantoprazole, in wild-type and P-gp and/or BCRP knockout mice. The absence of P-gp and BCRP together resulted in a significantly higher area under the plasma concentration–time curve (AUC) after i.v. administration, whereas the AUC after oral dosing was unaltered. Both elacridar and pantoprazole significantly increased the AUC of orally administered imatinib in wild-type but also in P-gp/BCRP knockout mice. This lower clearance was not due to a (further) reduction in biliary excretion. Fecal excretion was significantly reduced in P-gp and P-gp/BCRP knockout but not in BCRP knockout mice, whereas the brain penetration was significantly higher in P-gp/BCRP knockout mice compared to single P-gp or BCRP knockout or wild-type mice. In conclusion, P-gp and BCRP have only a modest effect on the ADME of imatinib in comparison to metabolic elimination. P-gp is the most prevalent factor for systemic clearance and limiting the brain penetration. The considerable drug-drug interaction observed with elacridar or pantoprazole is only partly mediated by inhibition of P-gp and BCRP and far more by the inhibition of other elimination pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Capdeville R, Buchdunger E, Zimmermann J et al (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1:493–502

    Article  PubMed  CAS  Google Scholar 

  2. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  3. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  PubMed  CAS  Google Scholar 

  4. Johnson BE, Fischer T, Fischer B et al (2003) Phase II study of imatinib in patients with small cell lung cancer. Clin Cancer Res 9:5880–5887

    PubMed  CAS  Google Scholar 

  5. Rao K, Goodin S, Levitt MJ et al (2005) A phase II trial of imatinib mesylate in patients with prostate specific antigen progression after local therapy for prostate cancer. Prostate 62:115–122

    Article  PubMed  CAS  Google Scholar 

  6. Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368

    Article  PubMed  CAS  Google Scholar 

  7. Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 16:1702–1708

    Article  PubMed  CAS  Google Scholar 

  8. Shannon KM (2002) Resistance in the land of molecular cancer therapeutics. Cancer Cell 2:99–102

    Article  PubMed  CAS  Google Scholar 

  9. McCormick F (2001) New-age drug meets resistance. Nature 412:281–282

    Article  PubMed  CAS  Google Scholar 

  10. Heinrich MC, Corless CL, Blanke CD et al (2006) Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24:4764–4774

    Article  PubMed  CAS  Google Scholar 

  11. Sleijfer S, Wiemer E, Seynaeve C et al (2007) Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis for novel approaches and individualization of treatment. Oncologist 12:719–726

    Article  PubMed  CAS  Google Scholar 

  12. Gambacorti-Passerini C, Zucchetti M, Russo D et al (2003) Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 9:625–632

    PubMed  CAS  Google Scholar 

  13. Cohen MH, Williams G, Johnson JR et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukaemia. Clin Cancer Res 8:935–942

    PubMed  CAS  Google Scholar 

  14. Peng B, Dutreix C, Mehring G et al (2004) Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol 44:158–162

    Article  PubMed  Google Scholar 

  15. Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmacokinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 55:379–386

    Article  PubMed  CAS  Google Scholar 

  16. Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    Article  PubMed  CAS  Google Scholar 

  17. Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    Article  PubMed  CAS  Google Scholar 

  18. Rochat B (2005) Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance: focus on tamoxifen, paclitaxel and imatinib metabolism. Clin Pharmacokinet 44:349–366

    Article  PubMed  CAS  Google Scholar 

  19. Gschwind HP, Pfaar U, Waldmeier F et al (2005) Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33:1503–1512

    Article  PubMed  CAS  Google Scholar 

  20. Marull M, Rochat B (2006) Fragmentation study of imatinib and characterization of new imatinib metabolites by liquid chromatography-triple-quadrupole and linear ion trap mass spectrometers. J Mass Spectrom 41:390–404

    Article  PubMed  CAS  Google Scholar 

  21. Hamada A, Miyano H, Watanabe H et al (2003) Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 307:824–828

    Article  PubMed  CAS  Google Scholar 

  22. Burger H, van Tol H, Boersma AW et al (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942

    Article  PubMed  CAS  Google Scholar 

  23. Houghton PJ, Germain GS, Harwood FC et al (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337

    Article  PubMed  CAS  Google Scholar 

  24. Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    Article  PubMed  CAS  Google Scholar 

  25. Dai H, Marbach P, Lemaire M et al (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092

    Article  PubMed  CAS  Google Scholar 

  26. Bihorel S, Camenisch G, Lemaire M et al (2007) Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec®) across the mouse blood–brain barrier. J Neurochem 102:1749–1757

    Article  PubMed  CAS  Google Scholar 

  27. Mahon FX, Belloc F, Lagarde V et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373

    Article  PubMed  CAS  Google Scholar 

  28. Nakanishi T, Shiozawa K, Hassel BA et al (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108:678–684

    Article  PubMed  CAS  Google Scholar 

  29. Bihorel S, Camenisch G, Lemaire M et al (2007) Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res 24:1720–1728

    Article  PubMed  CAS  Google Scholar 

  30. Oostendorp RL, Beijnen JH, Schellens JH et al (2007) Determination of imatinib mesylate and its main metabolite (CGP74588) in human plasma and murine specimens by ion-pairing reversed-phase high-performance liquid chromatography. Biomed Chromatogr 21:747–754

    Article  PubMed  CAS  Google Scholar 

  31. Jonker JW, Freeman J, Bolscher E et al (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23:1059–1065

    Article  PubMed  CAS  Google Scholar 

  32. de Vries NA, Zhao J, Kroon E et al (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449

    Article  PubMed  Google Scholar 

  33. Lam JL, Benet LZ (2004) Hepatic microsome studies are insufficient to characterize in vivo hepatic metabolic clearance and metabolic drug-drug interactions: studies of digoxin metabolism in primary rat hepatocytes versus microsomes. Drug Metab Dispos 32:1311–1316

    PubMed  CAS  Google Scholar 

  34. Lee YJ, Kusuhara H, Jonker JW et al (2005) Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood–brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther 312:44–52

    Article  PubMed  CAS  Google Scholar 

  35. Ozvegy-Laczka C, Hegedus T, Varady G et al (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495

    Article  PubMed  Google Scholar 

  36. Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 Pgp-, MRP1- and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  PubMed  CAS  Google Scholar 

  37. Endres CJ, Hsiao P, Chung FS et al (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27:501–517

    Article  PubMed  CAS  Google Scholar 

  38. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  39. Shitara Y, Horie T, Sugiyama Y (2006) Transporters as a determinant of drug clearance and tissue distribution. Eur J Pharm Sci 27:425–446

    Article  PubMed  CAS  Google Scholar 

  40. White DL, Saunders VA, Dang P et al (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704

    Article  PubMed  CAS  Google Scholar 

  41. Jiang X, Zhao Y, Smith C et al (2007) Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 21:926–935

    PubMed  CAS  Google Scholar 

  42. Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  PubMed  CAS  Google Scholar 

  43. Crossman LC, Druker BJ, Deininger MW et al (2005) hOCT 1 and resistance to imatinib. Blood 106:1133–1134

    Article  PubMed  CAS  Google Scholar 

  44. Wang L, Giannoudis A, Lane S et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to Imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Lianne Asschert (Novartis Pharma B.V., Arnhem, The Netherlands) for providing us with imatinib mesylate and its metabolite CGP74588 (Novartis Pharma AG, Basel, Switzerland). We would like to thank Alfred Schinkel (Department of Experimental Therapy, The Netherlands Cancer Institute, The Netherlands), Irma Meijerman (Faculty of Science, Utrecht University, The Netherlands) and Alwin D.R. Huitema (Department of Pharmacy & Pharmacology, Slotervaart Hospital, The Netherlands) for scientific input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roos L. Oostendorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oostendorp, R.L., Buckle, T., Beijnen, J.H. et al. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 27, 31–40 (2009). https://doi.org/10.1007/s10637-008-9138-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-008-9138-z

Keywords

Navigation