Skip to main content
Log in

Molecular design of two sterol 14α-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Sterol 14α-demethylase (CYP51) is one of the known major targets for azole antifungals. Therapeutic side effects of these antifungals are based on interactions of the azoles with the human analogue enzyme. This study describes for the first time a comparison of a human CYP51 (HU-CYP51) homology model with a homology model of the fungal CYP51 of Candida albicans (CA-CYP51). Both models are constructed by using the crystal structure of Mycobacterium tuberculosis MT-CYP51 (PDB code: 1EA1).

The binding mode of the azole ketoconazole is investigated in molecular dynamics simulations with the GROMACS force field. The usage of special parameters for the iron azole complex binding is necessary to obtain the correct complex geometry in the active site of the enzyme models. Based on the dynamics simulations it is possible to explain the enantioselectivity of the human enzyme and also to predict the binding mode of the isomers of ketoconazole in the active site of the fungal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Omura, T. and Ishimura, Y., Fujii-Kuriyama: Cytochrome-P450, 1993, ISBN: 3-527-30016-3

  2. D.J. Sheehan C.A. Hitchcock C.M. Sibley (1999) Clin. Microbiol. Rev. 12 40 Occurrence Handle1:CAS:528:DyaK1MXpvVOlsw%3D%3D Occurrence Handle9880474

    CAS  PubMed  Google Scholar 

  3. N.H. Georgopapadakou T.J. Walsh (1996) J. Antifungal Agents 40 279 Occurrence Handle1:CAS:528:DyaK28Xos1WntQ%3D%3D

    CAS  Google Scholar 

  4. A. Lupetti R. Danesi M. Campa M.D. Tacca S. Kelly (2002) Trends Mol. Med. 8 76 Occurrence Handle10.1016/S1471-4914(02)02280-3 Occurrence Handle1:CAS:528:DC%2BD38XhsFaitbY%3D Occurrence Handle11815273

    Article  CAS  PubMed  Google Scholar 

  5. D.C. Lamb D.E. Kelly B.C. Baldwin S.L. Kelly (2000) Chem. Biol. Interact. 125 165 Occurrence Handle10.1016/S0009-2797(99)00169-6 Occurrence Handle1:CAS:528:DC%2BD3cXhvVOrsb4%3D Occurrence Handle10731517

    Article  CAS  PubMed  Google Scholar 

  6. R.A. Fromtling (1988) Clin. Microbiol. Rev. 1 187 Occurrence Handle1:STN:280:BiaC28fhtFw%3D Occurrence Handle3069196

    CAS  PubMed  Google Scholar 

  7. L.M. Podust T.L. Poulos M.R. Waterman (2001) Proc. Nat. Acad. Sci. 98 3068 Occurrence Handle10.1073/pnas.061562898 Occurrence Handle1:CAS:528:DC%2BD3MXit1amu7Y%3D Occurrence Handle11248033

    Article  CAS  PubMed  Google Scholar 

  8. van der Spoel, D., van Buuren, A.R., Apol, E., Meulenhoff, P.J., Thieleman, D.P., Sijbers, A.L., Hess, B., Feenstra, K.A. and Berendsen, H.J., Gromacs User Manual version 3.0, 2001

  9. M. Sono M.P. Roach E.D. Coulter J.H. Dawson (1996) Chem. Rev. 69 2841 Occurrence Handle10.1021/cr9500500

    Article  Google Scholar 

  10. M. Filatov N. Harris S. Shaik (1999) J. Chem. Soc., Perkin Trans. 2 399

    Google Scholar 

  11. V. Jonas W. Thiel (1995) J. Chem. Phys. 102 8474 Occurrence Handle10.1063/1.468839 Occurrence Handle1:CAS:528:DyaK2MXlvFegtL0%3D

    Article  CAS  Google Scholar 

  12. A.D. Becke (1988) Phys. Rev. A 38 3098 Occurrence Handle1:CAS:528:DyaL1cXmtlOhsLo%3D Occurrence Handle9900728

    CAS  PubMed  Google Scholar 

  13. C. Lee W. Yang R.G. Parr (1988) Phys. Rev. B 41 785 Occurrence Handle10.1103/PhysRevB.37.785

    Article  Google Scholar 

  14. R. Ahlrichs M. Baer M. Häser H. Horn C. Kölmel (1989) Chem. Phys. Lett. 162 IssueID3 165 Occurrence Handle10.1016/0009-2614(89)85118-8 Occurrence Handle1:CAS:528:DyaK3cXkt1yrtg%3D%3D

    Article  CAS  Google Scholar 

  15. O. Treutler R. Ahlrichs (1995) J. Chem. Phys. 102 346 Occurrence Handle10.1063/1.469408 Occurrence Handle1:CAS:528:DyaK2MXivVCkt7s%3D

    Article  CAS  Google Scholar 

  16. Grimme, S., Gleichmann, M., Gastreich M. and Marian, C., ef.x, Universität Bonn

  17. The PsiPred Server at URL: http://bioinf.cs.ucl.ac.uk/psipred/

  18. A. Schappach H.-D. Höltje (2001) Die Pharmazie 56 IssueID6 435 Occurrence Handle1:CAS:528:DC%2BD3MXksFOjs7Y%3D Occurrence Handle11446160

    CAS  PubMed  Google Scholar 

  19. Stahl, G., Höltje, H.-D., Die Pharmazie 60 (2005) 247

    Google Scholar 

  20. D.C. Lamb D.E. Kelly K. Venkateswarul N.J. Nigel H. Frances J. Bligh W.-H. Schunk S.L. Kelly (1999) Biochemistry 38 IssueID27 8733 Occurrence Handle10.1021/bi9825089 Occurrence Handle1:CAS:528:DyaK1MXjsl2jsbc%3D Occurrence Handle10393548

    Article  CAS  PubMed  Google Scholar 

  21. INSIGHT II, DISCOVER, HOMOLOGY, Biosym MSI (now accerlerys), 9685 Scranton Road San Diego, CA 9 2121–3752

  22. J.R. Cupp-Vickery C. Garcia A. Hofarce K. Mcgee-Estreada (2001) J.Mol.Biol. 311 101 Occurrence Handle10.1006/jmbi.2001.4803 Occurrence Handle1:CAS:528:DC%2BD3MXltl2qu74%3D Occurrence Handle11469860

    Article  CAS  PubMed  Google Scholar 

  23. Cambridge Structural Database, Dr. Olga Kennard, F.R.S., Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK

  24. D.M. Rotstein D.J. Kertesz K.A.M. Walker D.C. Swinney (1992) J. Med. Chem. 35 IssueID15 2818 Occurrence Handle10.1021/jm00093a015 Occurrence Handle1:CAS:528:DyaK38Xks12rsL0%3D Occurrence Handle1495014

    Article  CAS  PubMed  Google Scholar 

  25. N. Debeljak S. Horvat K. Vouk M. Lee D. Rozmann (2000) Arch. Biochem. Biophys. 379 IssueID1 37 Occurrence Handle10.1006/abbi.2000.1859 Occurrence Handle1:CAS:528:DC%2BD3cXktFehtr0%3D Occurrence Handle10864439

    Article  CAS  PubMed  Google Scholar 

  26. D.C. Lamb D. Kelly M.B. Watermann M. Stromsted D. Rozman S. Kelly (1999) Yeast 15 755 Occurrence Handle10.1002/(SICI)1097-0061(19990630)15:9<755::AID-YEA417>3.0.CO;2-8 Occurrence Handle1:CAS:528:DyaK1MXktlOntLY%3D Occurrence Handle10398344

    Article  CAS  PubMed  Google Scholar 

  27. A. Tafi R. Costa M. Botta R.D. Santo F. Corelli S. Massa A. Ciacci F. Manetti M. Artico (2002) J. Med. Chem. 45 IssueID13 2720 Occurrence Handle10.1021/jm011087h Occurrence Handle1:CAS:528:DC%2BD38XjvFykur8%3D Occurrence Handle12061875

    Article  CAS  PubMed  Google Scholar 

  28. M. Botta F. Corelli F. Gasparrini F. Messina C. Mugnaini (2000) J. Org. Chem. 65 IssueID15 4736 Occurrence Handle10.1021/jo991937p Occurrence Handle1:CAS:528:DC%2BD3cXksVaqsb8%3D Occurrence Handle10959884

    Article  CAS  PubMed  Google Scholar 

  29. P.E. Boscott G.H. Grant (1994) J. Mol. Graph. 12 185 Occurrence Handle10.1016/0263-7855(94)80086-3 Occurrence Handle1:CAS:528:DyaK2MXhvVOktb4%3D Occurrence Handle7819160

    Article  CAS  PubMed  Google Scholar 

  30. H.-D. Höltje C. Fattorusso (1998) Pharm. Act. Helv. 72 271 Occurrence Handle10.1016/S0031-6865(97)00036-8

    Article  Google Scholar 

  31. D.F.V. Lewis A. Wiseman M.H. Tarbit (1999) J. Enzym. Inhib. 14 175 Occurrence Handle1:CAS:528:DC%2BD3cXotFelu7g%3D Occurrence Handle10445042

    CAS  PubMed  Google Scholar 

  32. H. Ji W. Zhang Y. Zhou M. Zhang J. Zhu Y. Song J. Lü J. Zhu (2000) J. Med. Chem. 43 IssueID13 2493 Occurrence Handle10.1021/jm990589g Occurrence Handle1:CAS:528:DC%2BD3cXjvVClu7g%3D Occurrence Handle10891108

    Article  CAS  PubMed  Google Scholar 

  33. A. Rosselo S. Bertini A. Lappucci M. Macchia A. Martinelli S. Rapposelli E. Herreros B. Macchia (2002) J. Med. Chem. 45 IssueID22 4903 Occurrence Handle10.1021/jm020980t Occurrence Handle12383016

    Article  PubMed  Google Scholar 

  34. H. Ji W. Zhang M. Zhang M. Kudo Y. Aoyama Y. Yoshido C. Sheng Y. Song S. Yang Y. Zhou J. Lü J. Zhu (2003) J. Med. Chem. 46 IssueID4 474 Occurrence Handle10.1021/jm020362c Occurrence Handle1:CAS:528:DC%2BD3sXksFCjsQ%3D%3D Occurrence Handle12570370

    Article  CAS  PubMed  Google Scholar 

  35. R. Gollapudy S. Ajmani S.A. Kulkarni (2004) Bioorg. Med. Chem. 12 2937 Occurrence Handle10.1016/j.bmc.2004.03.034 Occurrence Handle1:CAS:528:DC%2BD2cXktVKqt78%3D Occurrence Handle15142553

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dieter Höltje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupp, B., Raub, S., Marian, C. et al. Molecular design of two sterol 14α-demethylase homology models and their interactions with the azole antifungals ketoconazole and bifonazole. J Comput Aided Mol Des 19, 149–163 (2005). https://doi.org/10.1007/s10822-005-3692-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-3692-7

Keywords

Navigation