Skip to main content

Advertisement

Log in

Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In-silico models were generated to predict the extent of inhibition of cytochrome P450 isoenzymes using a set of relatively interpretable descriptors in conjunction with partial least squares (PLS) and regression trees (RT). The former was chosen due to the conservative nature of the resultant models built and the latter to more effectively account for any non-linearity between dependent and independent variables. All models are statistically significant and agree with the known SAR and they could be used as a guide to P450 liability through a classification based on the continuous pIC50 prediction given by the model. A compound is classified as having either a high or low P450 liability if the predicted pIC50 is at least one root mean square error (RMSE) from the high/low pIC50 cut-off of 5. If predicted within an RMSE of the cut-off we cannot be confident a compound will be experimentally low or high so an indeterminate classification is given. Hybrid models using bulk descriptors and fragmental descriptors do significantly better in modeling CYP450 inhibition, than bulk property QSAR descriptors alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rendic S, Di Carlo FJD (1997) Drug Metab Rev 29:413

    CAS  Google Scholar 

  2. Guengerich FP (2002) Drug Metab Rev 4:7

    Article  Google Scholar 

  3. Lin JH, Lu AYH (1998) Clin Pharmacokinet 35:361

    Article  CAS  Google Scholar 

  4. Bertz RJ, Granneman GR (1997) Clin Pharmacokinet 32:210

    CAS  Google Scholar 

  5. Rendic S, Di Carlo J (1997) Drug Metab Rev 29:413

    Article  CAS  Google Scholar 

  6. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FPJ (1994) Pharmacol Exp Ther 270:414

    CAS  Google Scholar 

  7. Masimirembwa CM, Thompson R, Andersson TB (2001) Comb Chem High Throughput Screen 4:245

    CAS  Google Scholar 

  8. Soars MG, Gelboin HV, Krausz KW, Riley RJ (2003) Br J Clin Pharmacol 35:175

    Article  Google Scholar 

  9. McGinnity DF, Griffin SJ, Moody GC, Voice M, Hanlon S, Friedberg T, Riley RJ (1999) Drug Metab Dispos 27:1017

    CAS  Google Scholar 

  10. Riley RJ, Martin IJ, Cooper AE (2002) Curr Drug Metab 3:527

    Article  CAS  Google Scholar 

  11. Hanch C, Fugita TJ (1964) J Am Chem Soc 86:1616

    Article  Google Scholar 

  12. Abraham MH, Le J (1999) J Pharm Sci 88:868

    Article  CAS  Google Scholar 

  13. Platts JA, Abraham MH, Zhao YH, Hersey A, Ijaz L, Butina D (2001) Eur J Med Chem 36:719

    Article  CAS  Google Scholar 

  14. Gleeson MP, Waters, Paine SW, Davis AM (2006) J Med Chem 49:1953

    Article  CAS  Google Scholar 

  15. Gleeson MP (2007) J Med Chem 50:101

    Article  CAS  Google Scholar 

  16. Bruneau P (2001) J Chem Inf Comput Sci 41:1605

    Article  CAS  Google Scholar 

  17. Riley RJ, Parker AJ, Trigg S, Manners CN (2001) Pharm Res 18:652

    Article  CAS  Google Scholar 

  18. Lewis DFV (2004) In Vitro 18:89

    Article  CAS  Google Scholar 

  19. Lewis DFV, Modi S, Dickins M (2002) Drug Metab Rev 34:69

    Article  CAS  Google Scholar 

  20. Susnow RG, Dixon SL (2003) J Chem Inf Comput Sci 43:1308

    Article  CAS  Google Scholar 

  21. Ekins S, De Groot MJ, Jones JP (2001) Drug Metab Dispos 29:936

    CAS  Google Scholar 

  22. Vaid TP, Lewis NS (2000) Bioorg Med Chem 8:795

    Article  CAS  Google Scholar 

  23. Rao S, Aoyama R, Schrag M, Trager WF, Rettie A, Jones JP (2000) J Med Chem 43:2789

    Article  CAS  Google Scholar 

  24. Smith DA, Ackland MJ, Jones BC (1997) DDT 2:479

    CAS  Google Scholar 

  25. Lewis DFV, Jacobs MN, Dickins M (2004) DDT 9:530

    CAS  Google Scholar 

  26. Hatch FT, Lightstone FC, Colvin ME (2000) Environ Mol Mutagen 35:279

    Article  CAS  Google Scholar 

  27. Lesigiarska I, Pajeva I, Yanev S (2002) Xenobiotica 32:1063

    Article  CAS  Google Scholar 

  28. Jones JP, He M, Trager WF, Rettie AE (1996) Drug Metab Dispos 24:1

    CAS  Google Scholar 

  29. De Groot MJ, Ackland MJ, Horne VA, Alex AA, Jones BCJ (1999) Med Chem 42:4062

    Article  CAS  Google Scholar 

  30. Wold H (1975) Quantitative sociology: international perspectives on mathematical and statistical model building. Academic Press, New York, pp 307–357

  31. Japertas P, Didziapetris R, Petrauskas A (2002) QSAR 21:23

    CAS  Google Scholar 

  32. Afzelius L, Zamora I., Masimirembwa CM, Karlen A, Andersson TB, Mecucci S, Baroni M, Cruciani GJ (2004) Med Chem 47:907

    Article  CAS  Google Scholar 

  33. Roberts G, Myatt GJ, Johnson WP, Cross KP, Blower PE Jr (2000) J Chem Inf Comput Sci 40:1302

    Article  CAS  Google Scholar 

  34. Höskuldsson A (1996) Prediction methods in science and technology. Thor Publishing, Copenhagen, Denmark

  35. Wold S, Albano C, Dunn WJ, Edlund U, Esbensen K, Geladi P, Hellberg S, Johansson E, Lindberg W, Sjöström M (1984) In: BR Kowalski BR, Chemometrics: mathematics and statistics in chemistry. D. Reidel Publishing Company, Dordrecht, Holland

  36. Wold S, Eriksson L, Sjöström M (2000) PLS in chemistry, encyclopedia of computational chemistry. Wiley, New York

  37. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Chapman and Hall, New York

  38. Chohan KK, Paine SW, Mistry J, Barton P, Davis AM (2005) J Med Chem 48:5154

    Article  CAS  Google Scholar 

  39. Asikainen AH, Ruuskanen J, Tuppurainen K (2004) SAR QSAR in Environ Res 15:19

    Article  CAS  Google Scholar 

  40. Baurin N, Mozziconacci JC, Arnoult E, Chavatte P, Marot C, Morin-Allory L (2004) J Chem Inf Comput Sci 44:276

    Article  CAS  Google Scholar 

  41. Jackson JE (1991) A user’s guide to principal components. John Wiley, New York

    Google Scholar 

  42. Wold S, Geladi P, Esbensen K, Öhman J (1987) J Chemom 1:41

    Article  CAS  Google Scholar 

  43. GOLPE: Multivariate Infometric Analysis Srl., Viale dei Castagni 16, Perugia, Italy. http://www.miasrl.co

  44. CART 4.0. Salford Systems, 8880 Rio San Diego Dr., STE. 1045, San Diego, California, 92108. http://www.salford-systems.com

  45. Rodgers SL, Davis AM, van de Waterbeemd H (2007) QSAR Comb. Sci 26:511

    Article  CAS  Google Scholar 

  46. Gleeson MP, Waters NJ, Paine SW, Davis AM (2006) J Med Chem 49:1953

    Article  CAS  Google Scholar 

  47. Gavaghan CL, Arnby CH, Blomberg N, Strandlund G, Boyer SJ (2007) Comp Aided Mol Des 21:189

    Article  CAS  Google Scholar 

  48. Lewis FV, Modi S, Dickins M (2001) Drug Metabol Drug Rev 18:18, 221

    Google Scholar 

  49. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Nature 424:464

    Article  CAS  Google Scholar 

  50. Rowland P, Blaney FE, Smyth MG, Jones JJ, Leydon VR, Oxbrow AK, Lewis CJ, Tennant MG, Modi S, Eggleston DS, Chenery RJ, Bridges AM (2006) J Biol Chem 281:7614

    Article  CAS  Google Scholar 

  51. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Science 30:683

    Article  CAS  Google Scholar 

  52. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091

    Article  CAS  Google Scholar 

  53. Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B (2006) J Med Chem 49:6672

    Article  CAS  Google Scholar 

  54. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269

    Article  CAS  Google Scholar 

  55. Byvatov E, Baringhaus K, Schneider G, Matter H (2006) QSAR Comb Sci 26:618

    Article  CAS  Google Scholar 

  56. O Brien SE, de Groot MJ (2005) J Med Chem 48:1287

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paul Gleeson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleeson, M.P., Davis, A.M., Chohan, K.K. et al. Generation of in-silico cytochrome P450 1A2, 2C9, 2C19, 2D6, and 3A4 inhibition QSAR models. J Comput Aided Mol Des 21, 559–573 (2007). https://doi.org/10.1007/s10822-007-9139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9139-6

Keywords

Navigation