Skip to main content

Advertisement

Log in

Mathematical modeling of topotecan pharmacokinetics and toxicodynamics in mice

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the pharmacokinetics and toxicodynamics of topotecan (TPT) in mice and to develop an integrated pharmacokinetic/toxicodynamic (PK/TD) model to characterize the relationship between the time course of TPT disposition and the time course of TPT-induced toxicity. TPT was administered to groups of 3–5 mice via i.v. bolus injection, i.p. bolus injection, and by i.p. infusion over 24, 72 and 168 h. Body weight was monitored to assess TPT-induced toxicity, and serial blood samples were collected and analyzed via HPLC to assess TPT pharmacokinetics. We found that TPT-induced toxicity increased dose-dependently for each mode of dosing investigated. The time course of topotecan-induced body weight-loss was delayed relative to the time course of topotecan disposition; nadir body weight was observed as late as 6 days following i.p. bolus dosing, and 3–5 days following termination of i.p. infusion. TPT exhibited non-linear disposition, which was well-characterized through the use of a two-compartment model with saturable elimination from the central compartment. Toxicodynamic data were characterized with an integrated PK/TD model that incorporated an indirect-effect model and four transit compartments to describe transduction events associated with TPT-induced toxicity. This model will be used to support the development of an inverse-targeting strategy that aims to enhance topotecan safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balthasar J and Fung HL (1994). Utilization of antidrug antibody fragments for the optimization of intraperitoneal drug therapy: studies using digoxin as a model drug. J Pharmacol Exp Ther 268: 734–739

    CAS  PubMed  Google Scholar 

  2. Balthasar JP and Fung HL (1996). Inverse targeting of peritoneal tumors: selective alteration of the disposition of methotrexate through the use of anti-methotrexate antibodies and antibody fragments. J Pharm Sci 85: 1035–1043

    Article  CAS  PubMed  Google Scholar 

  3. Lobo ED and Balthasar JP (2003). Pharmacokinetic-pharmacodynamic modeling of methotrexate-induced toxicity in mice. J Pharm Sci 92: 1654–1664

    Article  CAS  PubMed  Google Scholar 

  4. Lobo ED, Soda DM and Balthasar JP (2003). Application of pharmacokinetic-pharmacodynamic modeling to predict the kinetic and dynamic effects of anti-methotrexate antibodies in mice. J Pharm Sci 92: 1665–1676

    Article  CAS  PubMed  Google Scholar 

  5. Markman M (1997). Topotecan: an important new drug in the management of ovarian cancer. Semin Oncol 24: S5–S11

    CAS  PubMed  Google Scholar 

  6. Herben VM, ten Bokkel Huinink WW and Beijnen JH (1996). Clinical pharmacokinetics of topotecan. Clin Pharmacokinet 31: 85–102

    CAS  PubMed  Google Scholar 

  7. Hsiang YH and Liu LF (1988). Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48: 1722–1726

    CAS  PubMed  Google Scholar 

  8. Hsiang YH, Hertzberg R, Hecht S and Liu LF (1985). Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260: 14873–14878

    CAS  PubMed  Google Scholar 

  9. Rowinsky EK and Verweij J (1997). Review of phase I clinical studies with topotecan. Semin Oncol 24: S20-3–S20-10

    Google Scholar 

  10. Chen J and Balthasar JP (2005). High-performance liquid chromatographic assay for the determination of total and free topotecan in the presence and absence of anti-topotecan antibodies in mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci 816: 183–192

    Article  CAS  PubMed  Google Scholar 

  11. Bauer RJ and Guzy S (2004). Monte Carlo Parametric Expectation maximization (MC-PEM) method for analyzing population pharmacokinetic/pharmacodynamic (PK/PD) data. In: D’Argenio, DZ (eds) Advanced methods of pharmacokinetic and pharmacodynamic system analysis, pp 135–163. Kluwer Academic Publishers, Boston

    Chapter  Google Scholar 

  12. Duffull SB, Chabaud S, Nony P, Laveille C, Girard P and Aarons L (2000). A pharmacokinetic simulation model for ivabradine in healthy volunteers. Eur J Pharm Sci 10: 285–294

    Article  CAS  PubMed  Google Scholar 

  13. Ng CM, Joshi A, Dedrick RL, Garovoy MR and Bauer RJ (2005). Pharmacokinetic-pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharm Res 22: 1088–1100

    Article  CAS  PubMed  Google Scholar 

  14. Takimoto CH, Arbuck SG (1997) Clinical status and optimal use of topotecan. Oncology (Huntingt) 11:1635–1646; discussion 1649–1651, 1655–1657

  15. Thompson J, Stewart CF and Houghton PJ (1998). Animal models for studying the action of topoisomerase I targeted drugs. Biochim Biophys Acta 1400: 301–319

    CAS  PubMed  Google Scholar 

  16. Sardini A, Villa E, Morelli D, Ghione M, Menard S, Colnaghi MI and Balsari A (1992). An anti-doxorubicin monoclonal antibody modulates kinetic and dynamic characteristics of the drug. Int J Cancer 50: 617–620

    Article  CAS  PubMed  Google Scholar 

  17. Morelli D, Menard S, Cazzaniga S, Colnaghi MI and Balsari A (1997). Intratibial injection of an anti-doxorubicin monoclonal antibody prevents drug-induced myelotoxicity in mice. Br J Cancer 75: 656–659

    CAS  PubMed  Google Scholar 

  18. De Cesare M, Pratesi G, Perego P, Carenini N, Tinelli S, Merlini L, Penco S, Pisano C, Bucci F, Vesci L, Pace S, Capocasa F, Carminati P and Zunino F (2001). Potent antitumor activity and improved pharmacological profile of ST1481, a novel 7-substituted camptothecin. Cancer Res 61: 7189–7195

    PubMed  Google Scholar 

  19. Prijovich ZM, Chen BM, Leu YL, Chern JW and Roffler SR (2002). Anti-tumour activity and toxicity of the new prodrug 9-aminocamptothecin glucuronide (9ACG) in mice. Br J Cancer 86: 1634–1638

    Article  CAS  PubMed  Google Scholar 

  20. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr and Stewart L (2002). The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 99: 15387–15392

    Article  CAS  PubMed  Google Scholar 

  21. Giovanella BC, Stehlin JS, Hinz HR, Kozielski AJ, Harris NJ and Vardeman DM (2002). Preclinical evaluation of the anticancer activity and toxicity of 9-nitro-20(S)-camptothecin (Rubitecan). Int J Oncol 20: 81–88

    CAS  PubMed  Google Scholar 

  22. Brogden RN and Wiseman LR (1998). Topotecan. A review of its potential in advanced ovarian cancer. Drugs 56: 709–723

    Article  CAS  PubMed  Google Scholar 

  23. Kollmannsberger C, Mross K, Jakob A, Kanz L and Bokemeyer C (1999). Topotecan – a novel topoisomerase I inhibitor: pharmacology and clinical experience. Oncology 56: 1–12

    Article  CAS  PubMed  Google Scholar 

  24. van Warmerdam LJ, ten Bokkel Huinink WW, Rodenhuis S, Koier I, Davies BE, Rosing H, Maes RA and Beijnen JH (1995). Phase I clinical and pharmacokinetic study of topotecan administered by a 24-hour continuous infusion. J Clin Oncol 13: 1768–1776

    PubMed  Google Scholar 

  25. Herben VM, Schoemaker E, Rosing H, van Zomeren DM, ten Bokkel Huinink WW, Dubbelman R, Hearn S, Schellens JH and Beijnen JH (2002). Urinary and fecal excretion of topotecan in patients with malignant solid tumours. Cancer Chemother Pharmacol 50: 59–64

    Article  CAS  PubMed  Google Scholar 

  26. Rosing H, Herben VM, van Gortel-van Zomeren DM, Hop E, Kettenes-van den Bosch JJ, ten Bokkel Huinink WW and Beijnen JH (1997). Isolation and structural confirmation of N-desmethyl topotecan, a metabolite of topotecan. Cancer Chemother Pharmacol 39: 498–504

    Article  CAS  PubMed  Google Scholar 

  27. Rosing H, van Zomeren DM, Doyle E, Bult A and Beijnen JH (1998). O-glucuronidation, a newly identified metabolic pathway for topotecan and N-desmethyl topotecan. Anticancer Drugs 9: 587–592

    Article  CAS  PubMed  Google Scholar 

  28. Zamboni WC, Houghton PJ, Johnson RK, Hulstein JL, Crom WR, Cheshire PJ, Hanna SK, Richmond LB, Luo X and Stewart CF (1998). Probenecid alters topotecan systemic and renal disposition by inhibiting renal tubular secretion. J Pharmacol Exp Ther 284: 89–94

    CAS  PubMed  Google Scholar 

  29. Houghton PJ, Cheshire PJ, Myers L, Stewart CF, Synold TW and Houghton JA (1992). Evaluation of 9-dimethylaminomethyl-10-hydroxycamptothecin against xenografts derived from adult and childhood solid tumors. Cancer Chemother Pharmacol 31: 229–239

    Article  CAS  PubMed  Google Scholar 

  30. De Cesare M, Zunino F, Pace S, Pisano C and Pratesi G (2000). Efficacy and toxicity profile of oral topotecan in a panel of human tumour xenografts. Eur J Cancer 36: 1558–1564

    Article  PubMed  Google Scholar 

  31. Guichard S, Montazeri A, Chatelut E, Hennebelle I, Bugat R and Canal P (2001). Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation. Clin Cancer Res 7: 3222–3228

    CAS  PubMed  Google Scholar 

  32. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH and Schinkel AH (2000). Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92: 1651–1656

    Article  CAS  PubMed  Google Scholar 

  33. Kruijtzer CM, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM and Schellens JH (2002). Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20: 2943–2950

    Article  CAS  PubMed  Google Scholar 

  34. Hendricks CB, Rowinsky EK, Grochow LB, Donehower RC and Kaufmann SH (1992). Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res 52: 2268–2278

    CAS  PubMed  Google Scholar 

  35. Herben VM, ten Bokkel Huinink WW, Schot ME, Hudson I and Beijnen JH (1998). Continuous infusion of low-dose topotecan: pharmacokinetics and pharmacodynamics during a phase II study in patients with small cell lung cancer. Anticancer Drugs 9: 411–418

    Article  CAS  PubMed  Google Scholar 

  36. van Warmerdam LJ, Creemers GJ, Rodenhuis S, Rosing H, de Boer-Dennert M, Schellens JH, ten Bokkel Huinink WW, Davies BE, Maes RA, Verweij J and Beijnen JH (1996). Pharmacokinetics and pharmacodynamics of topotecan given on a daily-times-five schedule in phase II clinical trials using a limited-sampling procedure. Cancer Chemother Pharmacol 38: 254–260

    Article  PubMed  Google Scholar 

  37. Tubergen DG, Stewart CF, Pratt CB, Zamboni WC, Winick N, Santana VM, Dryer ZA, Kurtzberg J, Bell B, Grier H and Vietti TJ (1996). Phase I trial and pharmacokinetic (PK) and pharmacodynamics (PD) study of topotecan using a five-day course in children with refractory solid tumors: a pediatric oncology group study. J Pediatr Hematol Oncol 18: 352–361

    Article  CAS  PubMed  Google Scholar 

  38. Haas NB, LaCreta FP, Walczak J, Hudes GR, Brennan JM, Ozols RF and O’Dwyer PJ (1994). Phase I/pharmacokinetic study of topotecan by 24-hour continuous infusion weekly. Cancer Res 54: 1220–1226

    CAS  PubMed  Google Scholar 

  39. O’Dwyer PJ, LaCreta FP, Haas NB, Halbherr T, Frucht H, Goosenberg E and Yao KS (1994). Clinical, pharmacokinetic and biological studies of topotecan. Cancer Chemother Pharmacol 34: S46–S52

    Article  PubMed  Google Scholar 

  40. Grochow LB, Rowinsky EK, Johnson R, Ludeman S, Kaufmann SH, McCabe FL, Smith BR, Hurowitz L, DeLisa A and Donehower RC (1992). Pharmacokinetics and pharmacodynamics of topotecan in patients with advanced cancer. Drug Metab Dispos 20: 706–713

    CAS  PubMed  Google Scholar 

  41. van Warmerdam LJ, Verweij J, Schellens JH, Rosing H, Davies BE, de Boer-Dennert M, Maes RA and Beijnen JH (1995). Pharmacokinetics and pharmacodynamics of topotecan administered daily for 5 days every 3 weeks. Cancer Chemother Pharmacol 35: 237–245

    Article  PubMed  Google Scholar 

  42. Boucaud M, Pinguet F, Poujol S, Romieu G, Cupissol D, Astre C, Culine S and Bressolle F (2001). Salivary and plasma pharmacokinetics of topotecan in patients with metastatic epithelial ovarian cancer. Eur J Cancer 37: 2357–2364

    Article  CAS  PubMed  Google Scholar 

  43. O’Dwyer PJ, LaCreta FP, Haas NB, Halbherr T, Frucht H, Goosenberg E, Yao KS (1994) Clinical, pharmacokinetic and biological studies of topotecan. Cancer Chemother Pharmacol 34(Suppl):S46–S52

    Google Scholar 

  44. Zamboni WC, D’Argenio DZ, Stewart CF, MacVittie T, Delauter BJ, Farese AM, Potter DM, Kubat NM, Tubergen D and Egorin MJ (2001). Pharmacodynamic model of topotecan-induced time course of neutropenia. Clin Cancer Res 7: 2301–2308

    CAS  PubMed  Google Scholar 

  45. Lobo ED and Balthasar JP (2002). Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 4: 42

    Article  Google Scholar 

  46. Mager DE and Jusko WJ (2001). Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther 70: 210–216

    Article  CAS  PubMed  Google Scholar 

  47. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I and Rocchetti M (2004). Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64: 1094–1101

    Article  CAS  PubMed  Google Scholar 

  48. Dayneka NL, Garg V and Jusko WJ (1993). Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21: 457–478

    Article  CAS  PubMed  Google Scholar 

  49. Jusko WJ and Ko HC (1994). Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 56: 406–419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Balthasar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Lu, Q. & Balthasar, J.P. Mathematical modeling of topotecan pharmacokinetics and toxicodynamics in mice. J Pharmacokinet Pharmacodyn 34, 829–847 (2007). https://doi.org/10.1007/s10928-007-9072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-007-9072-2

Keywords

Navigation