Skip to main content

Advertisement

Log in

Differential Contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in Vivo Renal Uptake of Uremic Toxins in Rats

  • Research Papers
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

Evidence suggests that uremic toxins such as hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS), and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) promote the progression of renal failure by damaging tubular cells via rat organic anion transporter 1 (rOat1) and rOat3 on the basolateral membrane of the proximal tubules. The purpose of the current study is to evaluate the in vivo transport mechanism responsible for their renal uptake.

Methods.

We investigated the uremic toxins transport mechanism using the abdominal aorta injection technique [i.e., kidney uptake index (KUI) method], assuming minimal mixing of the bolus with serum protein from circulating serum.

Results.

Maximum mixing was estimated to be 5.8% of rat serum by measuring estrone sulfate extraction after addition of 0–90% rat serum to the arterial injection solution. Saturable renal uptake of p-aminohippurate (PAH, Km = 408 μM) and benzylpenicillin (PCG, Km = 346 μM) was observed, respectively. The uptake of PAH and PCG was inhibited in a dose-dependent manner by unlabeled PCG (IC50 = 47.3 mM) and PAH (IC50 = 512 μM), respectively, suggesting that different transporters are responsible for their uptake. A number of uremic toxins inhibited the renal uptake of PAH and PCG. Excess PAH, which could inhibit rOat1 and rOat3, completely inhibited the saturable uptake of IA, IS, and CMPF by the kidney, and by 85% for HA uptake. PCG inhibited the total saturable uptake of HA, IA, IS, and CMPF by 10%, 10%, 45%, and 65%, respectively, at the concentration selective for rOat3.

Conclusions.

rOat1 could be the primary mediator of the renal uptake of HA and IA, accounting for approximately 75% and 90% of their transport, respectively. rOat1 and rOat3 contributed equally to the renal uptake of IS. rOat3 could account for about 65% of the uptake of CMPF under in vivo physiologic conditions. These results suggest that rOat1 and rOat3 play an important role in the renal uptake of uremic toxins and the induction of their nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CMPF:

3-carboxy-4-methyl-5-propyl-2-furanpropionate

ES:

estrone sulfate

HA:

hippurate

IA:

indoleacetate

IS:

indoxyl sulfate

KUI:

kidney uptake index

PAH:

p-aminohippurate

PCG:

benzylpenicillin; rOat, rat organic anion transporter

References

  1. 1. R. Vanholder, A. Argiles, U. Baurmeister, P. Brunet, W. Clark, G. Cohen, P. P. De Deyn, R. Deppisch, B. Descamps-Latscha, T. Henle, A. Jorres, Z. A. Massy, M. Rodriguez, B. Stegmayr, P. Stenvinkel, and M. L. Wratten. Uremic toxicity: present state of the art. Int. J. Artif. Organs 24:695–725 (2001).

    CAS  PubMed  Google Scholar 

  2. 2. Y. Tsutsumi, T. Deguchi, M. Takano, A. Takadate, W. E. Lindup, and M. Otagiri. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat. J. Pharmacol. Exp. Ther. 303:880–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. 3. T. Deguchi, M. Nakamura, Y. Tsutsumi, A. Suenaga, and M. Otagiri. Pharmacokinetics and tissue distribution of uraemic indoxyl sulphate in rats. Biopharm. Drug Dispos. 24:345–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. 4. T. Miyazaki, M. Ise, H. Seo, and T. Niwa. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int. Suppl. 62:S15–S22 (1997).

    CAS  PubMed  Google Scholar 

  5. 5. M. Satoh, H. Hayashi, M. Watanabe, K. Ueda, H. Yamato, T. Yoshioka, and M. Motojima. Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol 95:e111–e118 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. 6. T. Miyazaki, I. Aoyama, M. Ise, H. Seo, and T. Niwa. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol. Dial. Transplant. 15:1773–1781 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. 7. M. Motojima, A. Hosokawa, H. Yamato, T. Muraki, and T. Yoshioka. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 63:1671–1680 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. 8. T. Niwa and M. Ise. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 124:96–104 (1994).

    CAS  PubMed  Google Scholar 

  9. 9. T. Niwa, T. Nomura, S. Sugiyama, T. Miyazaki, S. Tsukushi, and S. Tsutsui. The protein metabolite hypothesis, a model for the progression of renal failure: an oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 62:S23–S28 (1997).

    CAS  PubMed  Google Scholar 

  10. 10. H. Kusuhara and Y. Sugiyama. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control. Rel. 78:43–54 (2002).

    Article  CAS  Google Scholar 

  11. 11. T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, and Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 65:162–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. 12. A. Tsuji, T. Terasaki, I. Tamai, and K. Takeda. In vivo evidence for carrier-mediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J. Pharmacol. Exp. Ther. 253:315–320 (1990).

    CAS  PubMed  Google Scholar 

  13. 13. T. Deguchi, S. Ohtsuki, M. Otagiri, H. Takanaga, H. Asaba, S. Mori, and T. Terasaki. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 61:1760–1768 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. 14. S. A. Terlouw, R. Masereeuw, and F. G. Russel. Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem. Pharmacol. 65:1393–1405 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. 15. T. Sakai, A. Takadate, and M. Otagiri. Characterization of binding site of uremic toxins on human serum albumin. Biol. Pharm. Bull. 18:1755–1761 (1995).

    CAS  PubMed  Google Scholar 

  16. 16. G. Chaudhuri, C. Verheugen, W. M. Pardridge, and H. L. Judd. Selective availability of protein bound estrogen and estrogen conjugates to the rat kidney. J. Endocrinol. Invest. 10:283–290 (1987).

    CAS  PubMed  Google Scholar 

  17. 17. Y. Tsutsumi, T. Maruyama, A. Takadate, M. Goto, H. Matsunaga, and M. Otagiri. Interaction between two dicarboxylate endogenous substances, bilirubin and an uremic toxin, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, on human serum albumin. Pharm. Res. 16:916–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. 18. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 4:879–885 (1981).

    CAS  PubMed  Google Scholar 

  19. 19. W. M. Pardridge and L. J. Mietus. Kinetics of neutral amino acid transport through the blood-brain barrier of the newborn rabbit. J. Neurochem. 38:955–962 (1982).

    CAS  PubMed  Google Scholar 

  20. 20. W. M. Pardridge, E. M. Landaw, L. P. Miller, L. D. Braun, and W. H. Oldendorf. Carotid artery injection technique: bounds for bolus mixing by plasma and by brain. J. Cereb. Blood Flow Metab. 5:576–583 (1985).

    CAS  PubMed  Google Scholar 

  21. 21. M. Holler, K. Dengler, and H. Breuer. Disposition of oestrone sulphate by the isolated perfused rat kidney. Biochem. Soc. Trans. 5:243–245 (1977).

    CAS  PubMed  Google Scholar 

  22. 22. M. Hasegawa, H. Kusuhara, D. Sugiyama, K. Ito, S. Ueda, H. Endou, and Y. Sugiyama. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J. Pharmacol. Exp. Ther. 300:746–753 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. 23. M. Hasegawa, H. Kusuhara, H. Endou, and Y. Sugiyama. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J. Pharmacol. Exp. Ther. 305:1087–1097 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. 24. Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol. Pharmacol. 61:982–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. 25. S. Mori, H. Takanaga, S. Ohtsuki, T. Deguchi, Y. S. Kang, K. Hosoya, and T. Terasaki. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J. Cereb. Blood Flow Metab. 23:432–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. 26. H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274:13675–13680 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. 27. D. H. Sweet, L. M. Chan, R. Walden, X. P. Yang, D. S. Miller, and J. B. Pritchard. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Renal Physiol. 284:F763–F769 (2003).

    CAS  PubMed  Google Scholar 

  28. 28. T. Aiba, S. Kubota, and T. Koizumi. Application of a non-linear dispersion model to analysis of the renal handling of p-aminohippurate in isolated perfused rat kidney. Biol. Pharm. Bull. 22:633–641 (1999).

    CAS  PubMed  Google Scholar 

  29. 29. D. Sugiyama, H. Kusuhara, Y. Shitara, T. Abe, P. J. Meier, T. Sekine, H. Endou, H. Suzuki, and Y. Sugiyama. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 298:316–322 (2001).

    CAS  PubMed  Google Scholar 

  30. 30. B. C. Burckhardt and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Otagiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguchi, T., Kouno, Y., Terasaki, T. et al. Differential Contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in Vivo Renal Uptake of Uremic Toxins in Rats. Pharm Res 22, 619–627 (2005). https://doi.org/10.1007/s11095-005-2486-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2486-x

Key Words:

Navigation