Skip to main content

Advertisement

Log in

Molecular Cloning and Functional Analyses of OAT1 and OAT3 from Cynomolgus Monkey Kidney

Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The functional characterization of monkey OAT1 (SLC22A6) and OAT3 (SLC22A8) was carried out to elucidate species differences in the OAT1- and OAT3-mediated transport between monkey and human.

Methods.

The cDNAs of monkey OAT1 and OAT3 were isolated from monkey kidney, and their stable transfectants were established in HEK293 cells (mkOAT1- and mkOAT3-HEK). Transport studies were performed using cDNA transfectants, and kinetic parameters were compared among rat, monkey and human.

Results.

The amino acid sequences of mkOAT1 and mkOAT3 exhibit 97% and 96% identity to their corresponding human orthologues. For OAT1, there was no obvious species difference in the Km values and the relative transport activities of 11 substrates with regard to p-aminohippurate transport. For OAT3, there was no species difference in the Km values and in the relative transport activities of nine substrates with regard to benzylpenicillin transport between monkey and human. However, the relative transport activities of indoxyl sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, and estrone-3-sulfate showed a difference between primates and rat and gave a poor correlation.

Conclusions.

These results suggest that monkey is a good predictor of the renal uptake of organic anions in the human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α-KG:

α-ketoglutarate

ACV:

acyclovir

AZT:

3′-azido-3′-deoxythymidine

CMD:

cimetidine

CMPF:

3-carboxy-4-methyl-5-propyl-2-furanpropionate

2,4-D:

2,4-dichloro-phenoxy-acetate

DHEAS:

dehydroepiandrosterone sulfate

E217βG:

estradiol-17β-glucuronide

E1S:

estrone-3-sulfate

HA:

hippurate

HEK293:

human embryonic kidney

hOAT:

human organic anion transporter

IA:

indoleacetate

IS:

indoxyl sulfate

mkOAT:

monkey organic anion transporter

MTX:

methotrexate

NSAIDs:

nonsteroidal anti-inflammatory drugs

OTA:

ochratoxin A

PAH:

p-amino-hippurate

PCG:

benzylpenicillin

rOat:

rat organic anion transporter

TBS-T:

tris-buffered saline/Tween 20

References

  1. 1. M. Komori, O. Kikuchi, T. Sakuma, J. Funaki, M. Kitada, and T. Kamataki. Molecular cloning of monkey liver cytochrome P-450 cDNAs; similarity of the primary sequences to human cytochromes P-450. Biochim. Biophys. Acta 1171;141–146 (1992).

    CAS  PubMed  Google Scholar 

  2. 2. T. Sakuma and T. Kamataki. A combination of monkeys and genetically engineered systems can improve the accuracy of estimations in human drug metabolism and toxicity. Drug News Perspect. 7;82–86 (1994).

    Google Scholar 

  3. 3. K. Ohta, M. Kitada, T. Hashizume, M. Komori, H. Ohi, and T. Kamataki. Purification of cytochrome P-450 from polychlorinated biphenyl-treated crab-eating monkeys; high homology to a form of human cytochrome P-450. Biochim. Biophys. Acta 996;142–145 (1989).

    CAS  PubMed  Google Scholar 

  4. 4. J. E. Sharer, L. A. Shipley, M. R. Vandenbranden, S. N. Binkley, and S. A. Wrighton. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab. Dispos. 23;1231–1241 (1995).

    CAS  PubMed  Google Scholar 

  5. 5. J. C. Stevens, L. A. Shipley, J. R. Cashman, M. Vandenbranden, and S. A. Wrighton. Comparison of human and rhesus monkey in vitro phase I and phase II hepatic drug metabolism activities. Drug Metab. Dispos. 21;753–760 (1993).

    CAS  PubMed  Google Scholar 

  6. 6. J. H. Lin. Species similarities and differences in pharmacokinetics. Drug Metab. Dispos. 23;1008–1021 (1995).

    CAS  PubMed  Google Scholar 

  7. 7. R. Dedrick, K. B. Bischoff, and D. S. Zaharko. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother. Rep. 54;95–101 (1970).

    CAS  PubMed  Google Scholar 

  8. 8. H. Matsushita, H. Suzuki, Y. Sugiyama, Y. Sawada, T. Iga, M. Hanano, and Y. Kawaguchi. Prediction of the pharmacokinetics of cefodizime and cefotetan in humans from pharmacokinetic parameters in animals. J. Pharmacobiodyn. 13;602–611 (1990).

    CAS  PubMed  Google Scholar 

  9. 9. I. Mahmood. Interspecies scaling of renally secreted drugs. Life Sci. 63;2365–2371 (1998).

    CAS  PubMed  Google Scholar 

  10. 10. M. Hosoyamada, T. Sekine, Y. Kanai, and H. Endou. Molecular cloning and functional expression of a multispecific organic anion transporter from human kidney. Am. J. Physiol. 276;F122–F128 (1999).

    CAS  PubMed  Google Scholar 

  11. 11. S. H. Cha, T. Sekine, J. I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59;1277–1286 (2001).

    CAS  PubMed  Google Scholar 

  12. 12. A. Enomoto, M. Takeda, M. Shimoda, S. Narikawa, Y. Kobayashi, T. Yamamoto, T. Sekine, S. H. Cha, T. Niwa, and H. Endou. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 301;797–802 (2002).

    CAS  PubMed  Google Scholar 

  13. 13. H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K. Inui. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13;866–874 (2002).

    CAS  PubMed  Google Scholar 

  14. 14. T. Deguchi, H. Kusuhara, A. Takadate, H. Endou, M. Otagiri, and Y. Sugiyama. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 65;162–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. 15. M. Hasegawa, H. Kusuhara, H. Endou, and Y. Sugiyama. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J. Pharmacol. Exp. Ther. 305;1087–1097 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. 16. M. Hasegawa, H. Kusuhara, D. Sugiyama, K. Ito, S. Ueda, H. Endou, and Y. Sugiyama. Functional involvement of rat organic anion transporter 3 (rOat3; Slc22a8) in the renal uptake of organic anions. J. Pharmacol. Exp. Ther. 300;746–753 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. 17. Y. Nagata, H. Kusuhara, S. Hirono, H. Endou, and Y. Sugiyama. Carrier-mediated uptake of H2-receptor antagonists by the rat choroid plexus; involvement of rat organic anion transporter 3. Drug Metab. Dispos. 32;1040–1047 (2004).

    CAS  PubMed  Google Scholar 

  18. 18. W. Lee and R. B. Kim. Transporters and renal drug elimination. Annu. Rev. Pharmacol. Toxicol. 44;137–166 (2004).

    CAS  PubMed  Google Scholar 

  19. 19. D. Sugiyama, H. Kusuhara, Y. Shitara, T. Abe, P. J. Meier, T. Sekine, H. Endou, H. Suzuki, and Y. Sugiyama. Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J. Pharmacol. Exp. Ther. 298;316–322 (2001).

    CAS  PubMed  Google Scholar 

  20. 20. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn. 4;879–885 (1981).

    CAS  PubMed  Google Scholar 

  21. 21. Y. Nagata, H. Kusuhara, H. Endou, and Y. Sugiyama. Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol. Pharmacol. 61;982–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. 22. K. Ichida, M. Hosoyamada, H. Kimura, M. Takeda, Y. Utsunomiya, T. Hosoya, and H. Endou. Urate transport via human PAH transporter hOAT1 and its gene structure. Kidney Int. 63;143–155 (2003).

    CAS  PubMed  Google Scholar 

  23. 23. H. Kusuhara, T. Sekine, N. Utsunomiya-Tate, M. Tsuda, R. Kojima, S. H. Cha, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain. J. Biol. Chem. 274;13675–13680 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. 24. A. Aslamkhan, Y. H. Han, R. Walden, D. H. Sweet, and J. B. Pritchard. Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. Am. J. Physiol. Renal Physiol. 285;F775–F783 (2003).

    CAS  PubMed  Google Scholar 

  25. 25. A. Bakhiya, A. Bahn, G. Burckhardt, and N. Wolff. Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell. Physiol. Biochem. 13;249–256 (2003).

    CAS  PubMed  Google Scholar 

  26. 26. D. H. Sweet, L. M. Chan, R. Walden, X. P. Yang, D. S. Miller, and J. B. Pritchard. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Renal Physiol. 284;F763–F769 (2003).

    CAS  PubMed  Google Scholar 

  27. 27. T. Sekine, N. Watanabe, M. Hosoyamada, Y. Kanai, and H. Endou. Expression cloning and characterization of a novel multispecific organic anion transporter. J. Biol. Chem. 272;18526–18529 (1997).

    CAS  PubMed  Google Scholar 

  28. 28. D. H. Sweet, N. A. Wolff, and J. B. Pritchard. Expression clon-ing and characterization of ROAT1. The basolateral organic anion transporter in rat kidney. J. Biol. Chem. 272;30088–30095 (1997).

    CAS  PubMed  Google Scholar 

  29. 29. C. Timchalk. Comparative inter-species pharmacokinetics of phenoxyacetic acid herbicides and related organic acids. evidence that the dog is not a relevant species for evaluation of human health risk. Toxicology 200;1–19 (2004).

    CAS  PubMed  Google Scholar 

  30. 30. T. M. S. Khamdang, M. Shimoda, R. Noshiro, S. Narikawa, X. L. Huang, A. Enomoto, P. Piyachaturawat, and H. Endou. Interactions of human- and rat-organic anion transporters with pravastatin and cimetidine. J. Pharmacol. Sci. 94;197–202 (2004).

    CAS  PubMed  Google Scholar 

  31. 31. B. C. Burckhardt, S. Brai, S. Wallis, W. Krick, N. A. Wolff, and G. Burckhardt. Transport of cimetidine by flounder and human renal organic anion transporter 1. Am. J. Physiol. Renal Physiol. 284;F503–F509 (2003).

    CAS  PubMed  Google Scholar 

  32. 32. R. Vanholder, A. Argiles, U. Baurmeister, P. Brunet, W. Clark, G. Cohen, P. P. De Deyn, R. Deppisch, B. Descamps-Latscha, T. Henle, A. Jorres, Z. A. Massy, M. Rodriguez, B. Stegmayr, P. Stenvinkel, and M. L. Wratten. Uremic toxicity; present state of the art. Int. J. Artif. Organs 24;695–725 (2001).

    CAS  PubMed  Google Scholar 

  33. 33. Y. Tsutsumi, T. Deguchi, M. Takano, A. Takadate, W. E. Lindup, and M. Otagiri. Renal disposition of a furan dicarboxylic acid and other uremic toxins in the rat. J. Pharmacol. Exp. Ther. 303;880–887 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. 34. N. Inotsume, M. Nishimura, M. Nakano, S. Fujiyama, and T. Sato. The inhibitory effect of probenecid on renal excretion of famotidine in young, healthy volunteers. J. Clin. Pharmacol. 30;50–56 (1990).

    CAS  PubMed  Google Scholar 

  35. 35. H. Motohashi, Y. Uwai, K. Hiramoto, M. Okuda, and K. I. Inui. Different transport properties between famotidine and cimetidine by human renal organic ion transporters (SLC22A). Eur. J. Pharmacol. 503;25–30 (2004).

    CAS  PubMed  Google Scholar 

  36. 36. J. H. Lin, L. E. Los, E. H. Ulm, and D. E. Duggan. Kinetic studies on the competition between famotidine and cimetidine in rats. Evidence of multiple renal secretory systems for organic cations. Drug Metab. Dispos. 16;52–56 (1988).

    CAS  PubMed  Google Scholar 

  37. 37. T. P. Schaub, J. Kartenbeck, J. Konig, H. Spring, J. Dorsam, G. Staehler, S. Storkel, W. F. Thon, and D. Keppler. Expression of the MRP2 gene-encoded conjugate export pump in human kidney proximal tubules and in renal cell carcinoma. J. Am. Soc. Nephrol. 10;1159–1169 (1999).

    CAS  PubMed  Google Scholar 

  38. 38. R. Masereeuw, S. Notenboom, P. H. Smeets, A. C. Wouterse, and F. G. Russel. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats. J. Am. Soc. Nephrol. 14;2741–2749 (2003).

    CAS  PubMed  Google Scholar 

  39. 39. N. Mizuno, M. Suzuki, H. Kusuhara, H. Suzuki, K. Takeuchi, T. Niwa, J. W. Jonker, and Y. Sugiyama. Impaired renal excretion of 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040) sulfate in breast cancer resistance protein (BCRP1/ABCG2) knockout mice. Drug Metab. Dispos. 32;898–901 (2004).

    CAS  PubMed  Google Scholar 

  40. 40. J. W. Jonker, M. Buitelaar, E. Wagenaar, M. A. Van Der Valk, G. L. Scheffer, R. J. Scheper, T. Plosch, F. Kuipers, R. P. Elferink, H. Rosing, J. H. Beijnen, and A. H. Schinkel. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl. Acad. Sci. USA 99;15649–15654 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. 41. A. E. Busch, A. Schuster, S. Waldegger, C. A. Wagner, G. Zempel, S. Broer, J. Biber, H. Murer, and F. Lang. Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc. Natl. Acad. Sci. USA 93;5347–5351 (1996).

    CAS  PubMed  Google Scholar 

  42. 42. T. Imaoka, H. Kusuhara, S. Adachi-Akahane, M. Hasegawa, N. Morita, H. Endou, and Y. Sugiyama. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J. Am. Soc. Nephrol. 15;2012–2022 (2004).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahara, H., Shono, M., Kusuhara, H. et al. Molecular Cloning and Functional Analyses of OAT1 and OAT3 from Cynomolgus Monkey Kidney. Pharm Res 22, 647–660 (2005). https://doi.org/10.1007/s11095-005-2503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2503-0

Key words:

Navigation