Skip to main content
Log in

Molecular Cloning, Functional Characterization and Tissue Distribution of Rat H+/Organic Cation Antiporter MATE1

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Transport characteristics and tissue distribution of the rat H+/organic cation antiporter MATE1 (multidrug and toxin extrusion 1) were examined.

Methods

Rat MATE1 cDNA was isolated by polymerase chain reaction (PCR) cloning. Transport characteristics of rat MATE1 were assessed by HEK293 cells transiently expressing rat MATE1. The mRNA expression of rat MATE1 was examined by Northern blot and real-time PCR analyses.

Results

The uptake of a prototypical organic cation tetraethylammonium (TEA) by MATE1-expressing cells was concentration-dependent, and showed the greatest value at pH 8.4 and the lowest at pH 6.0–6.5. Intracellular acidification induced by ammonium chloride resulted in a marked stimulation of TEA uptake. MATE1 transported not only organic cations such as cimetidine and metformin but also the zwitterionic compound cephalexin. MATE1 mRNA was expressed abundantly in the kidney and placenta, slightly in the spleen, but not expressed in the liver. Real-time PCR analysis of microdissected nephron segments showed that MATE1 was primarily expressed in the proximal convoluted and straight tubules.

Conclusions

These findings indicate that MATE1 is expressed in the renal proximal tubules and can mediate the transport of various organic cations and cephalexin using an oppositely directed H+ gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. B. Pritchard and D. S. Miller. Mechanisms mediating renal secretion of organic anions and cations. Physiol. Rev. 73:765–796 (1993).

    PubMed  CAS  Google Scholar 

  2. K. Inui and M. Okuda. Cellular and molecular mechanisms of renal tubular secretion of organic anions and cations. Clin. Exp. Nephrol. 2:100–108 (1998).

    Article  CAS  Google Scholar 

  3. K. Inui, S. Masuda, and H. Saito. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 58:944–958 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. B. C. Burckhardt and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. H. Koepsell and H. Endou. The SLC22 drug transporter family. Pflügers Arch. 447:666–676 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. M. Otsuka, T. Matsumoto, R. Morimoto, S. Arioka, H. Omote, and Y. Moriyama. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 102:17923–17928 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. M. Takano, K. Inui, T. Okano, H. Saito, and R. Hori. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Biochim. Biophys. Acta 773:113–124 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. K. Inui, M. Takano, T. Okano, and R. Hori. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. J. Pharmacol. Exp. Ther. 233:181–185 (1985).

    PubMed  CAS  Google Scholar 

  9. M. Takano, K. Inui, T. Okano, and R. Hori. Cimetidine transport in rat renal brush border and basolateral membrane vesicles. Life Sci. 37:1579–1585 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. R. Hori, H. Maegawa, T. Okano, M. Takano, and K. Inui. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes. J. Pharmacol. Exp. Ther. 241:1010–1016 (1987).

    PubMed  CAS  Google Scholar 

  11. H. Maegawa, M. Kato, K. Inui, and R. Hori. pH sensitivity of H+/organic cation antiport system in rat renal brush-border membranes. J. Biol. Chem. 263:11150–11154 (1988).

    PubMed  CAS  Google Scholar 

  12. T. Katsura, H. Maegawa, Y. Tomita, M. Takano, K. Inui, and R. Hori. Trans-stimulation effect on H+-organic cation antiport system in rat renal brush-border membranes. Am. J. Physiol. 261:F774–F778 (1991).

    PubMed  CAS  Google Scholar 

  13. Y. Urakami, M. Akazawa, H. Saito, M. Okuda, and K. Inui. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J. Am. Soc. Nephrol. 13:1703–1710 (2002).

    Article  PubMed  CAS  Google Scholar 

  14. T. Terada, M. Irie, M. Okuda, and K. Inui. Genetic variant Arg57His in human H+/peptide cotransporter 2 causes a complete loss of transport function. Biochem. Biophys. Res. Commun. 316:416–420 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. H. Ueo, H. Motohashi, T. Katsura, and K. Inui. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochem. Pharmacol. 70:1104–1113 (2005).

    Article  PubMed  CAS  Google Scholar 

  16. C. Musfeld, J. Biollaz, N. Belaz, U. W. Kesselring, and L. A. Decosterd. Validation of an HPLC method for the determination of urinary and plasma levels of N1-methylnicotinamide, an endogenous marker of renal cationic transport and plasma flow. J. Pharm. Biomed. Anal. 24:391–404 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. H. Saito, M. Okuda, T. Terada, S. Sasaki, and K. Inui. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of β-lactam antibiotics in the intestine and kidney. J. Pharmacol. Exp. Ther. 275:1631–1637 (1995).

    PubMed  CAS  Google Scholar 

  18. H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K. Inui. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13:866–874 (2002).

    PubMed  CAS  Google Scholar 

  19. S. Masuda, H. Saito, H. Nonoguchi, K. Tomita, and K. Inui. mRNA distribution and membrane localization of the OAT-K1 organic anion transporter in rat renal tubules. FEBS Lett. 407:127–131 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Y. Urakami, M. Okuda, S. Masuda, M. Akazawa, H. Saito, and K. Inui. Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm. Res. 18:1528–1534 (2001).

    Article  PubMed  CAS  Google Scholar 

  21. A. W. Jans, K. Amsler, B. Griewel, and R. K. Kinne. Regulation of intracellular pH in LLC-PK1 cells studied using 31P-NMR spectroscopy. Biochim. Biophys. Acta 927:203–212(1987).

    Article  PubMed  CAS  Google Scholar 

  22. S. H. Wright and T. M. Wunz. Transport of tetraethylammonium by rabbit renal brush-border and basolateral membrane vesicles. Am. J. Physiol. 253:F1040–F1050 (1987).

    PubMed  CAS  Google Scholar 

  23. C. Rafizadeh, F. Roch-Ramel, and C. Schali. Tetraethylammonium transport in renal brush border membrane vesicles of the rabbit. J. Pharmacol. Exp. Ther. 240:308–313 (1987).

    PubMed  CAS  Google Scholar 

  24. T. D. McKinney and M. E. Kunnemann. Cimetidine transport in rabbit renal cortical brush-border membrane vesicles. Am. J. Physiol. 252:F525–F535 (1987).

    PubMed  CAS  Google Scholar 

  25. L. Gisclon, F. M. Wong, and K. M. Giacomini. Cimetidine transport in isolated luminal membrane vesicles from rabbit kidney. Am. J. Physiol. 253:F141–F150 (1987).

    PubMed  CAS  Google Scholar 

  26. P. D. Holohan and C. R. Ross. Mechanisms of organic cation transport in kidney plasma membrane vesicles. 2. ΔpH studies. J. Pharmacol. Exp. Ther. 216:294–298 (1981).

    PubMed  CAS  Google Scholar 

  27. T. D. McKinney and M. E. Kunnemann. Procainamide transport in rabbit renal cortical brush border membrane vesicles. Am. J. Physiol. 249:F532–F541 (1985).

    PubMed  CAS  Google Scholar 

  28. K. Inui, H. Saito, and R. Hori. H+-gradient-dependent active transport of tetraethylammonium cation in apical-membrane vesicles isolated from kidney epithelial cell line LLC-PK1. Biochem. J. 227:199–203 (1985).

    PubMed  CAS  Google Scholar 

  29. H. Saito, M. Yamamoto, K. Inui, and R. Hori. Transcellular transport of organic cation across monolayers of kidney epithelial cell line LLC-PK1. Am. J. Physiol. 262:C59–C66 (1992).

    PubMed  CAS  Google Scholar 

  30. M. Takano, M. Kato, A. Takayama, M. Yasuhara, K. Inui, and R. Hori. Transport of procainamide in a kidney epithelial cell line LLC-PK1. Biochim. Biophys. Acta 1108:133–139 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. J. K. Chun, L. Zhang, M. Piquette-Miller, E. Lau, L. Q. Tong, and K. M. Giacomini. Characterization of guanidine transport in human renal brush border membranes. Pharm. Res. 14:936–941 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. R. H. Moseley, J. Morrissette, and T. R. Johnson. Transport of N 1-methylnicotinamide by organic cation-proton exchange in rat liver membrane vesicles. Am. J. Physiol. 259:G973–G982 (1990).

    PubMed  CAS  Google Scholar 

  33. V. Ganapathy, M. E. Ganapathy, C. N. Nair, V. B. Mahesh, and F. H. Leibach. Evidence for an organic cation-proton antiport system in brush-border membranes isolated from the human term placenta. J. Biol. Chem. 263:4561–4568 (1988).

    PubMed  CAS  Google Scholar 

  34. K. Yoshitomi and E. Fromter. Cell pH of rat renal proximal tubule in vivo and the conductive nature of peritubular HCO3− (OH) exit. Pflügers Arch. 402:300–305 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the 21st Century COE program “Knowledge Information Infrastructure for Genome Science,” a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a Grant-in-Aid for Research on Advanced Medical Technology from the Ministry of Health, Labor and Welfare of Japan. J.A. is supported as a Research Assistant by the 21st Century COE program “Knowledge Information Infrastructure for Genome Science.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Inui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, T., Masuda, S., Asaka, Ji. et al. Molecular Cloning, Functional Characterization and Tissue Distribution of Rat H+/Organic Cation Antiporter MATE1. Pharm Res 23, 1696–1701 (2006). https://doi.org/10.1007/s11095-006-9016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9016-3

Key Words

Navigation