Skip to main content

Advertisement

Log in

Why is it Challenging to Predict Intestinal Drug Absorption and Oral Bioavailability in Human Using Rat Model

Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the correlation of intestinal absorption for drugs with various absorption routes between human and rat, and to explore the underlying molecular mechanisms for the similarity in drug intestinal absorption and the differences in oral bioavailability between human and rat.

Materials and Methods

The intestinal permeabilities of 14 drugs and three drug-like compounds with different absorption mechanisms in rat and human jejunum were determined by in situ intestinal perfusion. A total of 48 drugs were selected for oral bioavailability comparison. Expression profiles of transporters and metabolizing enzymes in both rat and human intestines (duodenum and colon) were measured using GeneChip analysis.

Results

No correlation (r 2 = 0.29) was found in oral drug bioavailability between rat and human, while a correlation (r 2 = 0.8) was observed for drug intestinal permeability with both carrier-mediated absorption and passive diffusion mechanisms between human and rat small intestine. Moderate correlation (with r 2 > 0.56) was also found for the expression levels of transporters in the duodenum of human and rat, which provides the molecular mechanisms for the similarity and correlation of drug absorption between two species. In contrast, no correlation was found for the expressions of metabolizing enzymes between rat and human intestine, which indicates the difference in drug metabolism and oral bioavailability in two species. Detailed analysis indicates that many transporters (such as PepT1, SGLT-1, GLUT5, MRP2, NT2, and high affinity glutamate transporter) share similar expression levels in both human and rat with regional dependent expression patterns, which have high expression in the small intestine and low expression in the colon. However, discrepancy was also observed for several other transporters (such as MDR1, MRP3, GLUT1, and GLUT3) in both the duodenum and colon of human and rat. In addition, the expressions of metabolizing enzymes (CYP3A4/CYP3A9 and UDPG) showed 12 to 193-fold difference between human and rat intestine with distinct regional dependent expression patterns.

Conclusions

The data indicate that rat and human show similar drug intestinal absorption profiles and similar transporter expression patterns in the small intestine, while the two species exhibit distinct expression levels and patterns for metabolizing enzymes in the intestine. Therefore, a rat model can be used to predict oral drug absorption in the small intestine of human, but not to predict drug metabolism or oral bioavailability in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. S. M. Pond and T. N. Tozer. First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 9:1–25 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. C. L. Cummins, W. Jacobsen, and L. Z. Benet. Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300:1036–1045 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. G. L. Amidon, H. Lennernas, V. P.Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. H. Lennernas. Human intestinal permeability. J. Pharm. Sci. 87:403–410 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. W. L. Chiou. The validation of the intestinal permeability approach to predict oral fraction of dose absorbed in humans and rats. Biopharm. Drug Dispos. 16:71–75 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. D. Sun, H. Lennernas, L. S. Welage, J. L. Barnett, C. P. Landowski, D. Foster, D. Fleisher, K. D.Lee, and G. L. Amidon. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm. Res. 19:1400–1416 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. D. Sun, L. X. Yu, M. A. Hussain, D. A. Wall, R. L. Smith, and G. L. Amidon. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug. Discov. Devel. 7:75–85 (2004).

    PubMed  CAS  Google Scholar 

  8. W. Rubas, N. Jezyk, and G. M. Grass. Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm. Res. 10:113–118 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, and I. Cooper. Evaluation of rat intestinal absorption data and correlation with human intestinal absorption. Eur. J. Med. Chem. 38:233–243 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. W. L.Chiou and A. Barve. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res. 15:1792–1795 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. E. Watanabe, M. Takahashi, and M. Hayashi. A possibility to predict the absorbability of poorly water-soluble drugs in humans based on rat intestinal permeability assessed by an in vitro chamber method. Eur. J. Pharm. Biopharm. 58:659–665 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. U. Fagerholm, L. Borgstrom, O. Ahrenstedt, and H. Lennernas. The lack of effect of induced net fluid absorption on the in vivo permeability of terbutaline in the human jejunum. J. Drug Target. 3:191–200 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. U. Fagerholm, M. Johansson, and H. Lennernas. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 13:1336–1342 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. U. Fagerholm, D. Nilsson, L. Knutson, and H. Lennernas. Jejunal permeability in humans in vivo and rats in situ: investigation of molecular size selectivity and solvent drag. Acta Physiol. Scand. 165:315–324 (1999).

    Article  PubMed  CAS  Google Scholar 

  15. E. Krondahl, A. Orzechowski, G. Ekstrom, and H. Lennernas. Rat jejunal permeability and metabolism of mu-selective tetrapeptides in gastrointestinal fluids from humans and rats. Pharm. Res. 14:1780–1785 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. C. P. Landowski, D. Sun, D. R. Foster, S. S. Menon, J. L. Barnett, L. S. Welage, C. Ramachandran, and G. L. Amidon. Gene expression in the human intestine and correlation with oral valacyclovir pharmacokinetic parameters. J. Pharmacol. Exp. Ther. 306:778–786 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. H. Lennernas, O. Ahrenstedt, R. Hallgren, L. Knutson, M.Ryde, and L. K. Paalzow. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm. Res. 9:1243–1251 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. H. Lennernas, S. Nylander, and A. L. Ungell. Jejunal permeability: a comparison between the ussing chamber technique and the single-pass perfusion in humans. Pharm. Res. 14:667–671 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. D. Nilsson, U. Fagerholm, and H. Lennernas. The influence of net water absorption on the permeability of antipyrine and levodopa in the human jejunum. Pharm. Res. 11:1540–1547 (1994).

    Article  PubMed  CAS  Google Scholar 

  20. R. Sandstrom, A. Karlsson, L. Knutson, and H. Lennernas. Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm. Res. 15:856–862 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. R. Sandstrom, T. W. Knutson, L. Knutson, B. Jansson, and H. Lennernas. The effect of ketoconazole on the jejunal permeability and CYP3A metabolism of (R/S)-verapamil in humans. Br. J. Clin. Pharmacol. 48:180–189 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. N. Takamatsu, L. S. Welage, N. M. Idkaidek, D. Y. Liu, P. I. Lee, Y. Hayashi, J. K. Rhie, H. Lennernas, J. L. Barnett, V. P. Shah, L. Lesko, and G. L. Amidon. Human intestinal permeability of piroxicam, propranolol, phenylalanine, and PEG 400 determined by jejunal perfusion. Pharm. Res. 14:1127–1132 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. N. Takamatsu, O. N. Kim, L. S. Welage, N. M. Idkaidek, Y. Hayashi, J. Barnett, R. Yamamoto, E. Lipka, H. Lennernas, A. Hussain, L. Lesko, and G. L. Amidon. Human jejunal permeability of two polar drugs: cimetidine and ranitidine. Pharm. Res. 18:742–744 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. S. Winiwarter, N. M.Bonham, F. Ax, A. Hallberg, H. Lennernas, and A. Karlen. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41:4939–4949 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. G. L. Amidon, M. Chang, D. Fleisher, and R. Allen. Intestinal absorption of amino acid derivatives: importance of the free alpha-amino group. J. Pharm. Sci. 71:1138–1141 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. D. I. Friedman and G. L. Amidon. Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm. Res. 6:1043–1047 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. X. Y. Chu, G. P. Sanchez-Castano, K. Higaki, D. M. Oh, C. P. Hsu, and G. L. Amidon. Correlation between epithelial cell permeability of cephalexin and expression of intestinal oligopeptide transporter. J. Pharmacol. Exp. Ther. 299:575–582 (2001).

    PubMed  CAS  Google Scholar 

  28. P. J. Sinko, G. D. Leesman, and G. L. Amidon. Predicting fraction dose absorbed in humans using a macroscopic mass balance approach. Pharm. Res. 8:979–988 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. J. G. Hardman, L. E. Limbird, and A. G. Gilman. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. New York: Medical Publishing Division, McGraw-Hill, 2001.

  30. S. Tamura, A. Ohike, R. Ibuki, L. Amidon Gordon, and S. Yamashita. Tacrolimus is a class II low-solubility high-permeability drug: the effect of P-glycoprotein efflux on regional permeability of tacrolimus in rats. J. Pharm. Sci. 91:719–729 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. D. A. Richards. Comparative pharmacodynamics and pharmacokinetics of cimetidine and ranitidine. J. Clin. Gastroenterol. 5(Suppl 1):81–90 (1983).

    Article  PubMed  Google Scholar 

  32. B. L. Kamath, A. Yacobi, S. D. Gupta, H. Stampfli, M. Durrani, and C.-M. Lai. Bioavailability of N-acetylprocainamide from mixed diet in rats. Res. Commun. Chem. Pathol. Pharmacol. 32:299–308 (1981).

    PubMed  CAS  Google Scholar 

  33. R. Griffiths, R. M. Lee, and D. C. Taylor. Kinetics of cimetidine in man and experimental animals. Int. Congr. Ser. 416:38–53 (1977).

    CAS  Google Scholar 

  34. L. Cruz, G. Castaneda-Hernandez, and A. Navarrete. Ingestion of chili pepper (Capsicum annuum) reduces salicylate bioavailability after oral aspirin administration in the rat. Can. J. Physiol. Pharmacol. 77:441–446 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. A. M. S. Ahmed, A. M. Moustafa, N. M. El-Abassawy, A. A. Ramadan, and M. I. Fetouh. HPLC evaluation and biovailability of nicardipine hydrochloride capsules and tablets. Al-Azhar J. Pharm. Sci. 25:116–129 (2000).

    CAS  Google Scholar 

  36. F. Berlioz, B. Lepere-Prevot, S. Julien, A. Tsocas, C. Carbon, C. Roze, and R. Farinotti. Chronic nifedipine dosing enhances cephalexin bioavailability and intestinal absorption in conscious rats. Drug Metab. Dispos. 28:1267–1269 (2000).

    PubMed  CAS  Google Scholar 

  37. M. M. Bhatti and R. T. Foster. Pharmacokinetics of the enantiomers of verapamil after intravenous and oral administration of racemic verapamil in a rat model. Biopharm. Drug Dispos. 18:387–396 (1997).

    Article  PubMed  CAS  Google Scholar 

  38. S. J. Connolly and R. E. Kates. Clinical pharmacokinetics of N-acetylprocainamide. Clin. Pharmacokinet. 7:206–220 (1982).

    Article  PubMed  CAS  Google Scholar 

  39. B. Kaye, N. J. Cussans, J. K. Faulkner, and D. A. Stopher. The metabolism and kinetics of doxazosin in man, rat, mouse and dog. Br. J. Clin. Pharmacol. 21 (Suppl 1):19S–25S (1986).

    Google Scholar 

  40. K. L. Duchin, D. N. McKinstry, A. I. Cohen, and B. H. Migdalof. Pharmacokinetics of captopril in healthy subjects and in patients with cardiovascular diseases. Clin. Pharmacokinet. 14:241–259 (1988).

    Article  PubMed  CAS  Google Scholar 

  41. B. Dusterberg, M. Humpel, and U. Speck. Terminal half-lives in plasma and bioavailability of norethisterone, levonorgestrel, cyproterone acetate and gestodene in rats, beagles and rhesus monkeys. Contraception. 24:673–683 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. K. Fotherby. Levonorgestrel. Clinical pharmacokinetics. Clin. Pharmacokinet. 28:203–215 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. M. R. Holdiness. Clinical pharmacokinetics of the antituberculosis drugs. Clin. Pharmacokinet. 9:511–544 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. M. Humpel, T. Toda, N. Oshino, and G. Pommerenke. The pharmacokinetics of lisuride hydrogen maleate in rat, rabbit and rhesus monkey. Eur. J. Drug Metab. Pharmacokinet. 6:207–219 (1981).

    Article  PubMed  CAS  Google Scholar 

  45. M. A. Hussain, B. J. Aungst, and E. Shefter. Buccal and oral bioavailability of nalbuphine in rats. J. Pharm. Sci. 75:218–219 (1986).

    Article  PubMed  CAS  Google Scholar 

  46. F. Jamali and D. R. Brocks. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin. Pharmacokinet. 19:197–217 (1990).

    PubMed  CAS  Google Scholar 

  47. R. P. Kapil, J. E. Axelson, R. Ongley, and J. D. Price. Nonlinear bioavailability of metoclopramide in the rat: evidence for saturable first-pass metabolism. J. Pharm. Sci. 73:215–218 (1984).

    Article  PubMed  CAS  Google Scholar 

  48. W. Krause and G. Kuhne. Pharmacokinetics of mepindolol sulfate in the rat, dog, and rhesus monkey. Studies on species differences. Drug Metab. Dispos. 11:91–96 (1983).

    PubMed  CAS  Google Scholar 

  49. K. C. Kwan, E. L. Foltz, G. O. Breault, J. E. Baer, and J. A. Totaro. Pharmacokinetics of methyldopa in man. J. Pharmacol. Exp. Ther. 198:264–277 (1976).

    PubMed  CAS  Google Scholar 

  50. R. M. Major, T. Taylor, L. F. Chasseaud, A. Darragh, and R. F. Lambe. Isosorbide 5-mononitrate kinetics. Clin. Pharmacol. Ther. 35:653–659 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. D. McTavish and E. M. Sorkin. Verapamil. An updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs. 38:19–76 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. R. Mehvar, F. Jamali, M. W. Watson, and D. Skelton. Pharmacokinetics of tetrabenazine and its major metabolite in man and rat. Bioavailability and dose dependency studies. Drug Metab. Dispos. 15:250–255 (1987).

    PubMed  CAS  Google Scholar 

  53. Y. Nakai, K. Yamamoto, K. Terada, H. Horibe, and K. Ozawa. Interaction of tri-O-methyl-beta-cyclodextrin with drugs. II. Enhanced bioavailability of ketoprofen in rats when administered with tri-O-methyl-beta-cyclodextrin. Chem. Pharm. Bull. (Tokyo) 31:3745–3747 (1983).

    CAS  Google Scholar 

  54. C. J. Needs and P. M. Brooks. Clinical pharmacokinetics of the salicylates. Clin. Pharmacokinet. 10:164–177 (1985).

    Article  PubMed  CAS  Google Scholar 

  55. T. Ogiso, M. Iwaki, and E. Tamaki. Bioavailability of indomethacin calcium and magnesium, and effect of the salts on drug metabolizing enzyme activities in rats. J. Pharmacobiodyn. 6:803–813 (1983).

    PubMed  CAS  Google Scholar 

  56. K. T. Olkkola, A. V. Brunetto, and M. J. Mattila. Pharmacokinetics of oxicam nonsteroidal anti-inflammatory agents. Clin. Pharmacokinet. 26:107–120 (1994).

    PubMed  CAS  Google Scholar 

  57. C. Prandi, P. Fagiolino, E. Manta, and L. Dominguez Llera. Bioavailability study of furosemide prodrugs in rats. Farmaco 47:1225–1234 (1992).

    PubMed  CAS  Google Scholar 

  58. E. J. Seaber, R. W. Peck, D. A. Smith, J. Allanson, N. R. Hefting, J. J. van Lier, F. A. Sollie, J. Wemer, and J. H. Jonkman. The absolute bioavailability and effect of food on the pharmacokinetics of zolmitriptan in healthy volunteers. Br. J. Clin. Pharmacol. 46:433–439 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. S. M. Singhvi, K. J. Kripalani, A. V. Dean, G. R. Keim, J. S. Kulesza, F. S. Meeker Jr., J. J. Ross Jr., J. M. Shaw, and B. H. Migdalof. Absorption and bioavailability of captopril in mice and rats after administration by gavage and in the diet. J. Pharm. Sci. 70:885–888 (1981).

    Article  PubMed  CAS  Google Scholar 

  60. M. Strolin Benedetti and D. A. Larue. Bioavailability of codeine preparations in the rat. Arzneimittelforschung 23:826–828 (1973).

    PubMed  CAS  Google Scholar 

  61. A. E. Thomsen, M. S. Christensen, M. A. Bagger, and B. Steffansen. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1: comparison of in vivo bioavailability in rats and transport in Caco-2 cells. Eur. J. Pharm. Sci. 23:319–325 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. J. A. Young and K. D. Edwards. Studies on the absorption, metabolism and excretion of methyldopa and other catechols and their influence on amino acid transport in rats. J. Pharmacol. Exp. Ther. 145:102–112 (1964).

    PubMed  CAS  Google Scholar 

  63. W. L. Chiou and P. W. Buehler. Comparison of oral absorption and bioavailability of drugs between monkey and human. Pharm. Res. 19:868–874 (2002).

    Article  PubMed  CAS  Google Scholar 

  64. I. de Waziers, P. H. Cugnenc, C. S. Yang, J. P. Leroux, and P. H. Beaune. Cytochrome P 450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmacol. Exp. Ther. 253:387–394 (1990).

    PubMed  Google Scholar 

  65. C. P. Strassburg, S. Kneip, J. Topp, P. Obermayer-Straub, A. Barut, R. H. Tukey, and M. P. Manns. Polymorphic gene regulation and interindividual variation of UDP-glucuronosyltransferase activity in human small intestine. J. Biol. Chem. 275:36164–36171 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. G. Fricker, J. Drewe, J. Huwyler, H. Gutmann, and C. Beglinger. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitroin vivo correlation. Br. J. Pharmacol. 118:1841–1847 (1996).

    PubMed  CAS  Google Scholar 

  67. S. A. Adibi. The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340 (1997).

    Article  PubMed  CAS  Google Scholar 

  68. H. Ogihara, H. Saito, B. C. Shin, T. Terado, S. Takenoshita, Y. Nagamachi, K. Inui, and K. Takata. Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem. Biophys. Res. Commun. 220:848–852 (1996).

    Article  PubMed  CAS  Google Scholar 

  69. W. S. Kim, Y. Y. Kim, S. J. Jang, K. Kimm, and M. H. Jung. Glucose transporter 1 (GLUT1) expression is associated with intestinal type of gastric carcinoma. J. Korean Med. Sci. 15:420–424 (2000).

    PubMed  CAS  Google Scholar 

  70. T. Nakamura, T. Sakaeda, N. Ohmoto, T. Tamura, N. Aoyama, T. Shirakawa, T. Kamigaki, T. Nakamura, I. Kim Ke, R. Kim Soo, Y. Kuroda, M. Matsuo, M. Kasuga, and K. Okumura. Real-time quantitative polymerase chain reaction for MDR1, MRP1, MRP2, and CYP3A-mRNA levels in Caco-2 cell lines, human duodenal enterocytes, normal colorectal tissues, and colorectal adenocarcinomas. Drug Metab. Dispos. 30:4–6 (2002).

    Article  PubMed  CAS  Google Scholar 

  71. C. Zimmermann, H. Gutmann, P. Hruz, J.-P. Gutzwiller, C. Beglinger, and J. Drewe. Mapping of multidrug resistance gene 1 and multidrug resistance-associated protein isoform 1 to 5 mRNA expression along the human intestinal tract. Drug Metab. Dispos. 33:219–224 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. D. Rost, S. Mahner, Y. Sugiyama, and W. Stremmel. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am. J. Physiol. 282:G720–G726 (2002).

    Google Scholar 

  73. Y. Kiuchi, H. Suzuki, T. Hirohashi, C. A. Tyson, and Y. Sugiyama. cDNA cloning and inducible expression of human multidrug resistance associated protein 3 (MRP3). FEBS Lett. 433:149–152 (1998).

    Article  PubMed  CAS  Google Scholar 

  74. V. J. Wacher, C. Y. Wu, and L. Z. Benet. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13:129–134 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. G. Jedlitschky, I. Leier, U. Buchholz, J. Hummel-Eisenbeiss, B. Burchell, and D. Keppler. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem. J. 327(Pt 1):305–310 (1997).

    PubMed  CAS  Google Scholar 

  76. Q.-Y. Zhang, D. Dunbar, A. Ostrowska, S. Zeisloft, J. Yang, and L. S. Kaminsky. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos. 27:804–809 (1999).

    PubMed  CAS  Google Scholar 

  77. J. C. Kolars, P. Schmiedlin-Ren, J. D. Schuetz, C. Fang, and P. B. Watkins. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J. Clin. Invest. 90:1871–1878 (1992).

    Article  PubMed  CAS  Google Scholar 

  78. M. F. Paine, M. Khalighi, J. M. Fisher, D. D. Shen, K. L. Kunze, C. L. Marsh, J. D. Perkins, and K. E. Thummel. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J. Pharmacol. Exp. Ther. 283:1552–1562 (1997).

    PubMed  CAS  Google Scholar 

  79. J. C. Kolars, K. S. Lown, P. Schmiedlin-Ren, M. Ghosh, C. Fang, S. A.Wrighton, R. M. Merion, and P. B. Watkins. CYP3A gene expression in human gut epithelium. Pharmacogenetics 4:247–259 (1994).

    Article  PubMed  CAS  Google Scholar 

  80. K. Takara, N. Ohnishi, S. Horibe, and T. Yokoyama. Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAs in rat small intestine. Drug Metab. Dispos. 31:1235–1239 (2003).

    Article  PubMed  CAS  Google Scholar 

  81. M. Lindell, M. Lang, and H. Lennernas. Expression of genes encoding for drug metabolising cytochrome P450 enzymes and P-glycoprotein in the rat small intestine; comparison to the liver. Eur. J. Drug Metab. Pharmacokinet. 28:41–48 (2003).

    Article  PubMed  CAS  Google Scholar 

  82. A. S. Koster, A. C. Frankhuijzen-Sierevogel, and J. Noordhoek. Distribution of glucuronidation capacity (1-naphthol and morphine) along the rat intestine. Biochem. Pharmacol. 34:3527–3532 (1985).

    Article  PubMed  CAS  Google Scholar 

  83. J. H. Lin, M. Chiba, and T. A. Baillie. Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol. Rev. 51:135–158 (1999).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Grant from The Ohio Cancer Research Associates to DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duxin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Gibbs, S.T., Fang, L. et al. Why is it Challenging to Predict Intestinal Drug Absorption and Oral Bioavailability in Human Using Rat Model. Pharm Res 23, 1675–1686 (2006). https://doi.org/10.1007/s11095-006-9041-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9041-2

Key words

Navigation