Skip to main content

Advertisement

Log in

Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study was aimed to investigate the effects of a phenolic antioxidant, butylated hydroxyanisole (BHA) and its metabolite, tert-butylhydroquinone (tBHQ) on the induction of HO-1, NQO1 and Nrf2 proteins and their regulatory mechanisms in primary-cultured hepatocytes.

Methods

After exposure of BHA and tBHQ to primary-cultured rat and human hepatocytes and mouse neonatal fibroblasts (MFs), Western blot, semi-quantitative RT-PCR and microarray analysis were conducted.

Results

Induction of HO-1, NQO1 and Nrf2 proteins and activation of ERK1/2 and JNK1/2 were observed after BHA and tBHQ treatments in primary-cultured rat and human hepatocytes. Semi-quantitative RT-PCR study and microarray analysis revealed that HO-1 and NQO1 were transcriptionally activated in primary-cultured rat hepatocytes and a substantial transcriptional activation, including HO-1 occurred in primary-cultured human hepatocytes after BHA treatment. Whereas BHA failed to induce HO-1 in wild-type and Nrf2 knock-out MFs, tBHQ strongly induced HO-1 in wild-type, but not in Nrf2 knock-out MFs.

Conclusions

Our data demonstrate that both BHA and tBHQ are strong chemical inducers of HO-1, NQO1 and Nrf2 proteins in primary-cultured human and rat hepatocytes with the activation of MAPK ERK1/2 and JNK1/2. However, in MFs, BHA failed to induce HO-1, whereas tBHQ strongly induced HO-1 in Nrf2 wild-type but not in Nrf2 knock-out, suggesting that Nrf2 is indispensable for tBHQ-induced HO-1 in MF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. S. Lee and Y. J. Surh. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett.224:171–184 (2005).

    Article  CAS  Google Scholar 

  2. C. Chen and A. N. Kong. Dietary chemopreventive compounds and ARE/EpRE signaling. Free Radic. Biol. Med.36:1505–1516 (2004).

    Article  CAS  Google Scholar 

  3. K. Itoh, T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto, and Y. Nabeshima. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun.236:313–322 (1997).

    Article  CAS  Google Scholar 

  4. Y. J. Surh. Cancer chemoprevention with dietary phytochemicals. Nat. Rev., Cancer. 3:768–780 (2003).

    Article  CAS  Google Scholar 

  5. L. E. Otterbein, M. P. Soares, K. Yamashita, and F. H. Bach. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol.24:449–455 (2003).

    Article  CAS  Google Scholar 

  6. K. A. Kirkby and C. A. Adin. Products of heme oxygenase and their potential therapeutic applications. Am. J. Physiol., Renal Physiol.290:F563–F571 (2006).

    Article  CAS  Google Scholar 

  7. Z. Dong, Y. Lavrovsky, M. A. Venkatachalam, and A. K. Roy. Heme oxygenase-1 in tissue pathology: the yin and yang. Am. J. Pathol.156:1485–1488 (2000).

    Article  CAS  Google Scholar 

  8. D. E. Baranano, M. Rao, C. D. Ferris, and S. H. Snyder. Biliverdin reductase: a major physiologic cytoprotectant. Proc. Natl. Acad. Sci. U. S. A.99:16093–16098 (2002).

    Article  CAS  Google Scholar 

  9. L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. Tao Lu, M. Wysk, R. J. Davis, R. A. Flavell, and A. M. Choi. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med.6:422–428 (2000).

    Article  CAS  Google Scholar 

  10. R. Foresti, J. Hammad, J. E. Clark, T. R. Johnson, B. E. Mann, A. Friebe, C. J. Green, and R. Motterlini. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br. J. Pharmacol.142:453–460 (2004).

    Article  CAS  Google Scholar 

  11. H. O. Pae, G. S. Oh, B. M. Choi, S. C. Chae, Y. M. Kim, K. R. Chung, and H. T. Chung. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J. Immunol.172:4744–4751 (2004).

    Article  CAS  Google Scholar 

  12. B. S. Zuckerbraun, T. R. Billiar, S. L. Otterbein, P. K. Kim, F. Liu, A. M. Choi, F. H. Bach, and L. E. Otterbein. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J. Exp. Med.198:1707–1716 (2003).

    Article  CAS  Google Scholar 

  13. C. D. Ferris, S. R. Jaffrey, A. Sawa, M. Takahashi, S. D. Brady, R. K. Barrow, S. A. Tysoe, H. Wolosker, D. E. Baranano, S. Dore, K. D. Poss, and S. H. Snyder. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat. Cell Biol.1:152–157 (1999).

    Article  CAS  Google Scholar 

  14. P. Nioi and J. D. Hayes. Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop–helix transcription factors. Mutat. Res.555:149–171 (2004).

    Article  CAS  Google Scholar 

  15. D. Ross. Quinone reductases multitasking in the metabolic world. Drug Metab. Rev.36:639–654 (2004).

    Article  CAS  Google Scholar 

  16. G. Asher, J. Lotem, B. Cohen, L. Sachs, and Y. Shaul. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc. Natl. Acad. Sci. U. S. A.98:1188–1193 (2001).

    Article  CAS  Google Scholar 

  17. G. Asher, J. Lotem, L. Sachs, C. Kahana, and Y. Shaul. Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1. Proc. Natl. Acad. Sci. U. S. A.99:13125–13130 (2002).

    Article  CAS  Google Scholar 

  18. L. W. Wattenberg. Inhibition of chemical carcinogen-induced pulmonary neoplasia by butylated hydroxyanisole. J. Natl. Cancer Inst.50:1541–1544 (1973).

    Article  CAS  Google Scholar 

  19. B. S. Reddy, Y. Maeura, and J. H. Weisburger. Effect of various levels of dietary butylated hydroxyanisole on methylazoxymethanol acetate-induced colon carcinogenesis in CF1 mice. J. Natl. Cancer Inst.71:1299–1305 (1983).

    CAS  PubMed  Google Scholar 

  20. F. L. Chung, M. Wang, S. G. Carmella, and S. S. Hecht. Effects of butylated hydroxyanisole on the tumorigenicity and metabolism of N-nitrosodimethylamine and N-nitrosopyrrolidine in A/J mice. Cancer Res.46:165–168 (1986).

    CAS  PubMed  Google Scholar 

  21. G. M. Williams and M. J. Iatropoulos. Inhibition of the hepatocarcinogenicity of aflatoxin B1 in rats by low levels of the phenolic antioxidants butylated hydroxyanisole and butylated hydroxytoluene. Cancer Lett.104:49–53 (1996).

    Article  CAS  Google Scholar 

  22. H. Verhagen, P. A. Schilderman, and J. C. Kleinjans. Butylated hydroxyanisole in perspective. Chem. Biol. Interact. 80:109–134 (1991).

    Article  CAS  Google Scholar 

  23. H. Verhagen, H. H. Thijssen, F. ten Hoor, and J. C. Kleinjans. Disposition of single oral doses of butylated hydroxyanisole in man and rat. Food Chem. Toxicol.27:151–158 (1989).

    Article  CAS  Google Scholar 

  24. L. W. Wattenberg, J. B. Coccia, and L. K. Lam. Inhibitory effects of phenolic compounds on benzo(a)pyrene-induced neoplasia. Cancer Res.40:2820–2823 (1980).

    CAS  PubMed  Google Scholar 

  25. B. Hager, J. R. Bickenbach, and P. Fleckman. Long-term culture of murine epidermal keratinocytes. J. Invest. Dermatol.112:971–976 (1999).

    Article  CAS  Google Scholar 

  26. G. Shen, C. Xu, R. Hu, M. R. Jain, S. Nair, W. Lin, C. S. Yang, J. Y. Chan, and A. N. Kong. Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/6J/Nrf2 (−/−) mice. Pharm. Res.22:1805–1820 (2005).

    Article  CAS  Google Scholar 

  27. D. Stewart, E. Killeen, R. Naquin, S. Alam, and J. Alam. Degradation of transcription factor Nrf2 via the ubiquitin–proteasome pathway and stabilization by cadmium. J. Biol. Chem.278:2396–2402 (2003).

    Article  CAS  Google Scholar 

  28. J. Alam, E. Killeen, P. Gong, R. Naquin, B. Hu, D. Stewart, J. R. Ingelfinger, and K. A. Nath. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing Nrf2. Am. J. Physiol., Renal Physiol.284:F743–F752 (2003).

    Article  CAS  Google Scholar 

  29. Y. S. Keum, W. S. Jeong, and A. N. Kong. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res.555:191–202 (2004).

    Article  CAS  Google Scholar 

  30. D. Ross, J. K. Kepa, S. L. Winski, H. D. Beall, A. Anwar, and D. Siegel. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129:77–97 (2000).

    Article  CAS  Google Scholar 

  31. W. S. Jeong, M. Jun, and A. N. Kong. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox Signal.8:99–106 (2006).

    Article  CAS  Google Scholar 

  32. S. R. Chinni and F. H. Sarkar. Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clin. Cancer Res.8:1228–1236 (2002).

    CAS  PubMed  Google Scholar 

  33. M. Saleem, F. Afaq, V. M. Adhami, and H. Mukhtar. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene23:5203–5214 (2004).

    Article  CAS  Google Scholar 

  34. K. H. Chun, J. W. Kosmeder II, S. Sun, J. M. Pezzuto, R. Lotan, W. K. Hong, and H. Y. Lee. Effects of deguelin on the phosphatidylinositol 3-kinase/Akt pathway and apoptosis in premalignant human bronchial epithelial cells. J. Natl. Cancer Inst.95:291–302 (2003).

    Article  CAS  Google Scholar 

  35. R. Kahl, S. Weinke, and H. Kappus. Production of reactive oxygen species due to metabolic activation of butylated hydroxyanisole. Toxicology59:179–194 (1989).

    Article  CAS  Google Scholar 

  36. P. A. Schilderman, J. M. van Maanen, E. J. Smeets, F. ten Hoor, and J. C. Kleinjans. Oxygen radical formation during prostaglandin H synthase-mediated biotransformation of butylated hydroxyanisole. Carcinogenesis14:347–353 (1993).

    Article  CAS  Google Scholar 

  37. D. C. Thompson, Y. N. Cha, and M. A. Trush. The peroxidase-dependent activation of butylated hydroxyanisole and butylated hydroxytoluene (BHT) to reactive intermediates. Formation of BHT-quinone methide via a chemical–chemical interaction. J. Biol. Chem.264:3957–3965 (1989).

    CAS  PubMed  Google Scholar 

  38. G. M. Williams, M. J. Iatropoulos, and J. Whysner. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem. Toxicol.37:1027–1038 (1999).

    Article  CAS  Google Scholar 

  39. F. Iverson. In vivo studies on butylated hydroxyanisole. Food Chem. Toxicol.37:993–997 (1999).

    Article  CAS  Google Scholar 

  40. R. Yu, S. Mandlekar, and A. T. Kong. Molecular mechanisms of butylated hydroxylanisole-induced toxicity: induction of apoptosis through direct release of cytochrome c. Mol. Pharmacol.58:431–437 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the members in Dr. Tony Kong's lab for the help in the discussion and preparation of this manuscript. This work was supported by the National Institute of Health Grant R01-CA094828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keum, YS., Han, YH., Liew, C. et al. Induction of Heme Oxygenase-1 (HO-1) and NAD[P]H: Quinone Oxidoreductase 1 (NQO1) by a Phenolic Antioxidant, Butylated Hydroxyanisole (BHA) and Its Metabolite, tert-Butylhydroquinone (tBHQ) in Primary-Cultured Human and Rat Hepatocytes. Pharm Res 23, 2586–2594 (2006). https://doi.org/10.1007/s11095-006-9094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9094-2

Key words

Navigation