Skip to main content

Advertisement

Log in

LXR Alpha Transactivates Mouse Organic Solute Transporter Alpha and Beta via IR-1 Elements Shared with FXR

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Recently identified organic solute transporter (Ost) α and β are located on the basolateral membrane of enterocytes and may be responsible for the intestinal absorption of many substrates including bile acids. In the present study, the mechanism governing the transcriptional regulation of their expression was investigated.

Methods and Results

To clarify the transcriptional regulation of Osts, reporter gene assays were performed using mouse Ostα/β promoter-luciferase reporter constructs. Co-transfection of the constructs with farnesoid X receptor (FXR) and retinoid X receptor α (RXRα) or liver X receptor α (LXRα) and RXRα into Caco-2 cells induced the transcriptional activities of both Ost α and β and further increases were observed following treatment with each agonist. Sequence analyses indicated the presence of IR-1 regions in Ostα and Ostβ promoters, which was confirmed by the finding that the deletion of IR-1 sequences abolished the response to FXR and LXRα. Furthermore, mutations in IR-1 reduced the FXR- and LXRα-dependent transactivation of Ostα/β. Together with the detection of direct binding of FXR/RXRα and LXRα/RXRα to the IR-1 elements, the presence of functional FXRE/LXRE was revealed in the promoter region of both Ostα and Ostβ. In addition, the stimulatory effect of FXR/RXRα and LXRα/RXRα on Ostα, but not on Ostβ, was further enhanced by HNF-4α.

Conclusions

It was concluded that LXRα/RXRα transcriptionally regulate mouse Ostα/β via IR-1 elements shared with FXR/RXRα. Exposure to FXR/LXRα modulators may affect the disposition of Ostα/β substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASBT:

apical sodium-dependent bile acid transporter

BSEP:

bile salt export pump

CDCA:

chenodeoxycholic acid

EMSA:

electrophoretic mobility shift assay

FXR:

farnesoid X receptor

FXRE:

FXR/RXR binding element

HNF-4:

hepatocyte nuclear factor-4

I–BABP:

ileal–bile acid binding protein

IR-1:

inverted repeat-1

LXR:

liver X receptor

LXRE:

LXR/RXR binding element

OST:

organic solute transporter

RXR:

retinoid X receptor

References

  1. H. Suzuki, and Y. Sugiyama. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur J Pharm Sci 12:3–12 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. H. Kusuhara, and Y. Sugiyama. Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J. Control. Release 78:43–54 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. C. G. Dietrich, A. Geier, and R. P. Oude Elferink. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–1795 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Q. Mao, and J. D. Unadkat. Role of the breast cancer resistance protein (ABCG2) in drug transport. Aaps J. 7:E118–E133 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. T. Okano, K. Inui, H. Maegawa, M. Takano, and R. Hori. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes. J. Biol. Chem. 261:14130–14134 (1986).

    PubMed  CAS  Google Scholar 

  6. M. E. Ganapathy, M. Brandsch, P. D. Prasad, V. Ganapathy, and F. H. Leibach. Differential recognition of beta -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. 270:25672–25677 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. D. Kobayashi, T. Nozawa, K. Imai, J. Nezu, A. Tsuji, and I. Tamai. Involvement of human organic anion transporting polypeptide OATP-B (SLC21A9) in pH-dependent transport across intestinal apical membrane. J. Pharmacol. Exp. Ther. 306:703–708 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. H. Satoh, F. Yamashita, M. Tsujimoto, H. Murakami, N. Koyabu, H. Ohtani, and Y. Sawada. Citrus juices inhibit the function of human organic anion-transporting polypeptide OATP-B. Drug Metab. Dispos. 33:518–523 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. G. K. Dresser, D. G. Bailey, B. F. Leake, U. I. Schwarz, P. A. Dawson, D. J. Freeman, and R. B. Kim. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin. Pharmacol. Ther. 71:11–20 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. G. K. Dresser, R. B. Kim, and D. G. Bailey. Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: possible role of organic anion transporting polypeptides. Clin. Pharmacol. Ther. 77:170–177 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. A. L. Craddock, M. W. Love, R. W. Daniel, L. C. Kirby, H. C. Walters, M. H. Wong, and P. A. Dawson. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 274:G157–G169 (1998).

    PubMed  CAS  Google Scholar 

  12. M. Kida, Y. Mano, Y. Ueno, K. Kobayashi, J. Goto, M. Ishii, and T. Shimosegawa. Vectorial transport of bile acids in immortalized mouse bile duct cells. Hepatol. Res. 27:151–157 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. T. Hirohashi, H. Suzuki, H. Takikawa, and Y. Sugiyama. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J. Biol. Chem. 275:2905–2910 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. D. Rost, S. Mahner, Y. Sugiyama, and W. Stremmel. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am. J. Physiol.: Gastrointest. Liver Physiol. 282:G720–G726 (2002).

    CAS  Google Scholar 

  15. T. Shoji, H. Suzuki, H. Kusuhara, Y. Watanabe, S. Sakamoto, and Y. Sugiyama. ATP-dependent transport of organic anions into isolated basolateral membrane vesicles from rat intestine. Am. J. Physiol.: Gastrointest. Liver Physiol. 287:G749–G756 (2004).

    Article  CAS  Google Scholar 

  16. W. Wang, D. J. Seward, L. Li, J. L. Boyer, and N. Ballatori. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl. Acad. Sci. USA 98:9431–9436 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. D. J. Seward, A. S. Koh, J. L. Boyer, and N. Ballatori. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J. Biol. Chem. 278:27473–27482 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. P. A. Dawson, M. Hubbert, J. Haywood, A. L. Craddock, N. Zerangue, W. V. Christian, and N. Ballatori. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J. Biol. Chem. 280:6960–6968 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. R. G. Tirona, and R. B. Kim. Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci. 94:1169–1186 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Makishima. Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J. Pharmacol. Sci. 97:177–183 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. J. L. Boyer, M. Trauner, A. Mennone, C. J. Soroka, S. Y. Cai, T. Moustafa, G. Zollner, J. Y. Lee, and N. Ballatori. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am. J. Physiol.: Gastrointest. Liver Physiol. 290:G1124–G1130 (2006).

    Article  CAS  Google Scholar 

  22. T. Frankenberg, A. Rao, F. Chen, J. Haywood, B. L. Shneider, and P. A. Dawson. Regulation of the mouse organic solute transporter {alpha}-beta, Ost{alpha}-Ostbeta, by bile acids. Am. J. Physiol.: Gastrointest. Liver Physiol. 290:G912–G922 (2006).

    Article  CAS  Google Scholar 

  23. J. F. Landrier, J. J. Eloranta, S. R. Vavricka, and G. A. Kullak-Ublick. The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am. J. Physiol.: Gastrointest. Liver Physiol. 290:G476–G485 (2006).

    Article  CAS  Google Scholar 

  24. H. Lee, Y. Zhang, F. Y. Lee, S. F. Nelson, F. J. Gonzalez, and P. A. Edwards. FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J. Lipid Res. 47:201–214 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. G. Zollner, M. Wagner, T. Moustafa, P. Fickert, D. Silbert, J. Gumhold, A. Fuchsbichler, E. Halilbasic, H. Denk, H. U. Marschall, and M. Trauner. Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am. J. Physiol.: Gastrointest. Liver Physiol. 290:G923–G932 (2006).

    Article  CAS  Google Scholar 

  26. M. Crestani, E. De Fabiani, D. Caruso, N. Mitro, F. Gilardi, A. B. Vigil Chacon, R. Patelli, C. Godio, and G. Galli. LXR (liver X receptor) and HNF-4 (hepatocyte nuclear factor-4): key regulators in reverse cholesterol transport. Biochem. Soc. Trans. 32:92–96 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. D. Jung, B. Hagenbuch, M. Fried, P. J. Meier, and G. A. Kullak-Ublick. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am. J. Physiol.: Gastrointest. Liver Physiol. 286:G752–G761 (2004).

    Article  CAS  Google Scholar 

  28. J. Grober, I. Zaghini, H. Fujii, S. A. Jones, S. A. Kliewer, T. M. Willson, T. Ono, and P. Besnard. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J. Biol. Chem. 274:29749–29754 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. J. Cui, L. Huang, A. Zhao, J. L. Lew, J. Yu, S. Sahoo, P. T. Meinke, I. Royo, F. Pelaez, and S. D. Wright. Guggulsterone is a farnesoid X receptor antagonist in coactivator association assays but acts to enhance transcription of bile salt export pump. J. Biol. Chem. 278:10214–10220 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. H. Nozawa. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-A(y) mice. Biochem. Biophys. Res. Commun. 336:754–761 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. F. Chen, L. Ma, P. A. Dawson, C. J. Sinal, E. Sehayek, F. J. Gonzalez, J. Breslow, M. Ananthanarayanan, and B. L. Shneider. Liver receptor homologue-1 mediates species- and cell line-specific bile acid-dependent negative feedback regulation of the apical sodium-dependent bile acid transporter. J. Biol. Chem. 278:19909–19916 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. C. J. Sinal, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert, and F. J. Gonzalez. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731–744 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. C. Thomas, J. F. Landrier, D. Gaillard, J. Grober, M. C. Monnot, A. Athias, and P. Besnard. Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences. Gut 55:1321–1331 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. J. F. Landrier, J. Grober, J. Demydchuk, and P. Besnard. FXRE can function as an LXRE in the promoter of human ileal bile acid-binding protein (I–BABP) gene. FEBS Lett. 553:299–303 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. P. A. Mak, H. R. Kast-Woelbern, A. M. Anisfeld, and P. A. Edwards. Identification of PLTP as an LXR target gene and apoE as an FXR target gene reveals overlapping targets for the two nuclear receptors. J. Lipid Res. 43:2037–2041 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. T. Li, and J. Y. Chiang. Rifampicin induction of CYP3A4 requires pregnane X receptor cross talk with hepatocyte nuclear factor 4alpha and coactivators, and suppression of small heterodimer partner gene expression. Drug Metab. Dispos. 34:756–764 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from The Japanese Ministry of Education, Science, Sports and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tappei Takada.

Additional information

M. Okuwaki and T. Takada contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuwaki, M., Takada, T., Iwayanagi, Y. et al. LXR Alpha Transactivates Mouse Organic Solute Transporter Alpha and Beta via IR-1 Elements Shared with FXR. Pharm Res 24, 390–398 (2007). https://doi.org/10.1007/s11095-006-9163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9163-6

Key words

Navigation