Skip to main content

Advertisement

Log in

Intestinal Absorption Mechanisms of Prenylated Flavonoids Present in the Heat-Processed Epimedium koreanum Nakai (Yin Yanghuo)

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose is to determine absorption mechanism of five bioactive prenylated flavonoids (baohuoside I, icariin, epimedine A, B, and C) present in heat-processed Epimedium koreanum Nakai (Yin Yanghuo).

Methods

Transport of five prenylated flavonoids present in heat-processed herbs were studied in the human intestinal Caco-2 model and the perfused rat intestinal model.

Results

In the perfused rat intestinal model, prenylated flavonoids with a monoglucosidic bond (e.g., icariin) was rapidly hydrolyzed into corresponding metabolites (e.g., baohuoside I). In the Caco-2 model, apical to basolateral permeability of a monoglycoside baohuoside I (1.46 × 10−6 cm/sec) was more than 2 folds greater than four prenylated flavonoids with 2 or more sugar moieties (<0.6 × 10−6 cm/sec). The slow apical to basolateral transport of baohuoside I was the result of efflux. This efflux was carrier-mediated and active since its transport was vectorial, concentration- and temperature-dependent with activation energies greater than 15 kcal/mol. Efflux of baohuoside I was significantly suppressed by inhibitors of BCRP and MRP2, whereas efflux of icariin was significantly inhibited only by p-glycoprotein inhibitor verapamil. Because YHH is often heat-processed for better efficacy, we determined and found the optimal condition for increasing contents of more bioavailable flavonoids (i.e., baohuoside I) to be 160–170°C for 5–7 min.

Conclusions

Poor bioavailability of prenylated flavonoids results from their poor intrinsic permeation and transporter-mediated efflux. Heat processing parameters may be optimized to preserve the herb’s bioavailable flavonoids, which help retain and improve its efficacy during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Branca, and S. Lorenzetti. Health effects of phytoestrogens. Forum Nutr. 100–111 (2005).

  2. X. Huang, D. Zhu, and Y. Lou. A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol. 564:26–36 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. M. Itoigawa, C. Ito, M. Ju-ichi, T. Nobukuni, E. Ichiishi, H. Tokuda, H. Nishino, and H. Furukawa. Cancer chemopreventive activity of flavanones on Epstein–Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett. 176:25–29 (2002).

    Article  PubMed  CAS  Google Scholar 

  4. A. Maiti, M. Cuendet, V. L. Croy, D. C. Endringer, J. M. Pezzuto, and M. Cushman. Synthesis and biological evaluation of (+/−)-abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breast cancer. J. Med. Chem. 50:2799–2806 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. S. Milligan, J. Kalita, V. Pocock, A. Heyerick, L. De Cooman, H. Rong, and D. De Keukeleire. Oestrogenic activity of the hop phyto-oestrogen, 8-prenylnaringenin. Reproduction. 123:235–242 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. J. F. Stevens, and J. E. Page. Xanthohumol and related prenylflavonoids from hops and beer: to your good health!. Phytochemistry. 65:1317–1330 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. C. C. Lin, L. T. Ng, F. F. Hsu, D. E. Shieh, and L. C. Chiang. Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin. Exp. Pharmacol. Physiol. 31:65–69 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. T. Z. Liu, C. Y. Chen, S. J. Yiin, C. H. Chen, J. T. Cheng, M. K. Shih, Y. S. Wang, and C. L. Chern. Molecular mechanism of cell cycle blockage of hepatoma SK-Hep-1 cells by Epimedin C through suppression of mitogen-activated protein kinase activation and increased expression of CDK inhibitors p21(Cip1) and p27(Kip1). Food Chem. Toxicol. 44:227–235 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. S. P. Yap, P. Shen, M. S. Butler, Y. Gong, C. J. Loy, and E. L. Yong. New estrogenic prenylflavone from Epimedium brevicornum inhibits the growth of breast cancer cells. Planta Med. 71:114–119 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Editorial Cmmittee of Pharmacopoeia of People’s Republic of China. Pharmacopoeia of the People's Republic of China vol. 1. Chemical Industry Press, Beijing, 2005, p. 229.

    Google Scholar 

  11. E. J. Jeong, X. Liu, X. Jia, J. Chen, and M. Hu. Coupling of conjugating enzymes and efflux transporters: impact on bioavailability and drug interactions. Curr. Drug. Metab. 6:455–468 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. W. Andlauer, J. Kolb, and P. Furst. Absorption and metabolism of genistin in the isolated rat small intestine. FEBS Lett. 475:127–130 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. W. Andlauer, J. Kolb, and P. Fürst. Isoflavones from tofu are absorbed and metabolized in the isolated rat small intestine. J. Nutr. 130:3021–3027 (2000).

    PubMed  CAS  Google Scholar 

  14. J. Chen, H. Lin, and M. Hu. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J. Pharmacol. Exp. Ther. 304:1228–1235 (2003).

    Article  PubMed  CAS  Google Scholar 

  15. Y. Liu, and M. Hu. Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metab. Dispos. 30:370–377 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. M. Hu, Y. Li, C. M. Davitt, S. M. Huang, K. Thummel, B. W. Penman, and C. L. Crespi. Transport and metabolic characterization of Caco-2 cells expressing CYP3A4 and CYP3A4 plus oxidoreductase. Pharm. Res. 16:1352–1359 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. M. Hu, J. Chen, and H. Lin. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J. Pharmacol. Exp. Ther. 307:314–321 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. M. Hu, J. Chen, Y. Zhu, A. H. Dantzig, R. E. Stratford Jr, and M. T. Kuhfeld. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharm. Res. 11:1405–1413 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. J. Chen, S. Wang, X. Jia, S. Bajimaya, V. Tam, and M. Hu. Disposition of Flavonoids via Recycling: Comparison of Intestinal versus Hepatic Disposition. Drug Metab. Dispos. 33:1777–1784 (2005).

    PubMed  CAS  Google Scholar 

  20. Y. Liu, Y. Liu, Y. Dai, L. Xun, and M. Hu. Enteric disposition and recycling of flavonoids and ginkgo flavonoids. J. Altern. Complement Med. 9:631–640 (2003).

    Article  PubMed  Google Scholar 

  21. R. A. Walgren, J. T. Lin, R. K. Kinne, and T. Walle. Cellular uptake of dietary flavonoid quercetin 4'-beta-glucoside by sodium-dependent glucose transporter SGLT1. J. Pharmacol. Exp. Ther. 294:837–843 (2000).

    PubMed  CAS  Google Scholar 

  22. R. A. Walgren, U. K. Walle, and T. Walle. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells. Biochem. Pharmacol. 55:1721–1727 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. U. K. Walle, K. L. French, R. A. Walgren, and T. Walle. Transport of genistein-7-glucoside by human intestinal CACO-2 cells: potential role for MRP2. Res. Commun. Mol. Pathol. Pharmacol. 103:45–56 (1999).

    PubMed  CAS  Google Scholar 

  24. Y. Zhang, A. Gupta, H. Wang, L. Zhou, R. R. Vethanayagam, J. D. Unadkat, and Q. Mao. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm. Res. 22:2023–2034 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Fan, and R. Rodriguez-Proteau. Ketoconazole and the modulation of multidrug resistance-mediated transport in Caco-2 and MDCKII-MDR1 drug transport models. Xenobiotica. 38:107–129 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. N. Nishio, T. Katsura, and K. I. Inui. Thyroid hormone regulates the expression and function of P-glycoprotein in Caco-2 Cells. Pharm. Res. 25(5):1037–1042 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. S. Zhang, X. Yang, and M. E. Morris. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm. Res. 21:1263–1273 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. S. Zhang, X. Yang, and M. E. Morris. Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 65:1208–1216 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. M. W. Biavatti, C. A. Koerich, C. H. Henck, E. Zucatelli, F. H. Martineli, T. B. Bresolin, and S. N. Leite. Coumarin content and physicochemical profile of Mikania laevigata extracts. Z. Naturforsch. [C]. 59:197–200 (2004).

    CAS  Google Scholar 

  30. Y. Yang, B. Kayan, N. Bozer, B. Pate, C. Baker, and A. M. Gizir. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A. 1152:262–267 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. D. J. Zhang, Z. L. Xiu, X. H. Lin, and D. J. Qi. Effects of three different drying methods on extraction and separation of ginsenosides from fresh ginseng. Zhong Xi Yi Jie He Xue Bao. 2:292–294 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Bin Jia or Ming Hu.

Additional information

The work is supported by NIH GM 70737 to MH and National Natural Science Foundation of China (Grant No. 30572372) to YC, YHZ and XBJ. Y.C. was also supported by a training grant from Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Zhao, Y.H., Jia, X.B. et al. Intestinal Absorption Mechanisms of Prenylated Flavonoids Present in the Heat-Processed Epimedium koreanum Nakai (Yin Yanghuo). Pharm Res 25, 2190–2199 (2008). https://doi.org/10.1007/s11095-008-9602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9602-7

KEY WORDS

Navigation