Skip to main content

Advertisement

Log in

Cellular Phototoxicity Evoked Through the Inhibition of Human ABC Transporter ABCG2 by Cyclin-dependent Kinase Inhibitors In vitro

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The physiological importance of the human ATP-binding cassette (ABC) transporter ABCG2 has been recognized with regard to porphyrin-mediated photosensitivity. Functional impairment owing to inhibition of ABCG2 by drugs or its genetic polymorphisms may lead to the disruption of porphyrin homeostasis, which in turn causes cellular toxicity.

Materials and Methods

We evaluated the impact on photosensitivity of the inhibition by cyclin-dependent kinase (CDK) inhibitors of ABCG2 function. For this purpose, we established new methods for photosensitivity assays by using Flp-In-293 cells and plasma membrane vesicles prepared from Sf9 insect cells. With the new methods, we subsequently tested CDK inhibitors, i.e., purvalanol A, WHI-P180, bohemine, roscovitine, and olomoucine.

Results

Among CDK inhibitors tested, purvalanol A was found to be the most potent inhibitor (IC50 = 3.5 μM) for ABCG2-mediated hematoporphyrin transport. At a concentration of 2.5 μM, it evoked the photosensitivity of ABCG2-expressing Flp-In-293 cells treated with pheophorbide a. WHI-P180 moderately inhibited ABCG2 function, exhibiting weak phototoxicity. In contrast, the phototoxicity of bohemine, roscovitine, and olomoucine were minimal in our assay system.

Conclusions

It is suggested that the planar structure is an important factor for interactions with the active site of ABCG2. The present study provides a new approach to studying drug-induced phototoxicity in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

BCRP:

breast cancer resistance protein

CDK:

cyclin-dependent kinase

D-MEM:

Dulbecco’s modified Eagle’s medium

EDTA:

ethylenediaminetetraacetic acid

EGFR:

epidermal growth factor receptor

EGTA:

ethyleneglycol-bis(2-aminoethyl)-N,N,N′,N′-tetracetic acid

EKI-785:

N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide

FCS:

fetal calf serum

HEPES:

2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid

HOMO:

highest occupied molecular orbital

IC50 :

concentration leading to a 50%-inhibition

K m :

Michaelis–Menten constant

MXR:

mitoxantrone resistance

MO:

molecular orbital

QSAR:

quantitative structure-activity relationship

Tris:

tris(hydroxymethyl)aminomethane

References

  1. J. W. Jonker, S. Musters, M. L. Vlaming, T. Plosch, K. E. Gooijert, M. J. Hillebrand, H. Rosing, J. H. Beijnen, H. J. Verkade, and A. H. Schinkel. Breast cancer resistance protein (Bcrp1/Abcg2) is expressed in the harderian gland and mediates transport of conjugated protoporphyrin IX. Am. J. Physiol. Cell. Physiol. 292:C2204–2212 (2007). doi:10.1152/ajpcell.00359.2006.

    Article  PubMed  CAS  Google Scholar 

  2. J. W. Jonker, M. Buitelaar, E. Wagenaar, M. A. Van Der Valk, G. L. Scheffer, R. J. Scheper, T. Plosch, F. Kuipers, R. P. Elferink, H. Rosing, J. H. Beijnen, and A. H. Schinkel. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl. Acad. Sci. U.S.A. 99:15649–15654 (2002). doi:10.1073/pnas.202607599.

    Article  PubMed  CAS  Google Scholar 

  3. A. Tamura, M. Watanabe, H. Saito, H. Nakagawa, T. Kamachi, I. Okura, and T. Ishikawa. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol. Pharmacol. 70:287–296 (2006).

    PubMed  CAS  Google Scholar 

  4. A. Tamura, Y. Onishi, R. An, S. Koshiba, K. Wakabayashi, K. Hoshijima, W. Priebe, T. Yoshida, S. Kometani, T. Matsubara, K. Mikuriya, and T. Ishikawa. In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab. Pharmacokinet. 22:428–440 (2007). doi:10.2133/dmpk.22.428.

    Article  PubMed  CAS  Google Scholar 

  5. R. Allikmets, L. M. Schriml, A. Hutchinson, V. Romano-Spica, and M. Dean. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58:5337–5339 (1998).

    PubMed  CAS  Google Scholar 

  6. L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, and D. D. Ross. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA. 95:15665–15670 (1998). doi:10.1073/pnas.95.26.15665.

    Article  PubMed  CAS  Google Scholar 

  7. K. Miyake, L. Mickley, T. Litman, Z. Zhan, R. Robey, B. Cristensen, M. Brangi, L. Greenberger, M. Dean, T. Fojo, and S. E. Bates. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59:8–13 (1999).

    PubMed  CAS  Google Scholar 

  8. M. Maliepaard, M. A. van Gastelen, L. A. de Jong, D. Pluim, R. C. van Waardenburg, M. C. Ruevekamp-Helmers, B. G. Floot, and J. H. Schellens. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 59:4559–4563 (1999).

    PubMed  CAS  Google Scholar 

  9. D. D. Ross, W. Yang, L. V. Abruzzo, W. S. Dalton, E. Schneider, H. Lage, M. Dietel, L. Greenberger, S. P. Cole, and L. A. Doyle. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J. Natl. Cancer Inst. 91:429–433 (1999). doi:10.1093/jnci/91.5.429.

    Article  PubMed  CAS  Google Scholar 

  10. M. Brangi, T. Litman, M. Ciotti, K. Nishiyama, G. Kohlhagen, C. Takimoto, R. Robey, Y. Pommier, T. Fojo, and S. E. Bates. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 59:5938–5946 (1999).

    PubMed  CAS  Google Scholar 

  11. S. Kawabata, M. Oka, K. Shiozawa, K. Tsukamoto, K. Nakatomi, H. Soda, M. Fukuda, Y. Ikegami, K. Sugahara, Y. Yamada, S. Kamihira, L. A. Doyle, D. D. Ross, and S. Kohno. Breast cancer resistance protein directly confers SN-38 resistance of lung cancer cells. Biochem. Biophys. Res. Commun. 280:1216–1223 (2001). doi:10.1006/bbrc.2001.4267.

    Article  PubMed  CAS  Google Scholar 

  12. S. Koshiba, R. An, H. Saito, K. Wakabayashi, A. Tamura, and T. Ishikawa. Human ABC transporters ABCG2 (BCRP) and ABCG4. Xenobiotica 38:863–888(2008).

    Google Scholar 

  13. P. Krishnamurthy, T. Xie, and J. D. Schuetz. The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol. Ther. 114:345–358 (2007). doi:10.1016/j.pharmthera.2007.02.001.

    Article  PubMed  CAS  Google Scholar 

  14. K. Wakabayashi, A. Tamura, H. Saito, Y. Onishi, and T. Ishikawa. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab. Rev. 38:371–391 (2006). doi:10.1080/03602530600727947.

    Article  PubMed  CAS  Google Scholar 

  15. P. Rousselot, J. Larghero, E. Raffoux, F. Calvo, M. Tulliez, S. Giraudier, and M. Rybojad. Photosensitization in chronic myelogenous leukaemia patients treated with imatinib mesylate. Br. J. Haematol. 120:1091–1092 (2003). doi:10.1046/j.1365-2141.2003.04208_3.x.

    Article  PubMed  Google Scholar 

  16. V. Brazzelli, F. Prestinari, T. Barbagallo, C. Rona, E. Orlandi, F. Passamonti, F. Locatelli, M. Zecca, S. Villani, and G. Borroni. A long-term time course of colorimetric assessment of the effects of imatinib mesylate on skin pigmentation: a study of five patients. J. Eur. Acad. Dermatol. Venereol. 21:384–387 (2007). doi:10.1111/j.1468-3083.2006.01981.x.

    Article  PubMed  CAS  Google Scholar 

  17. C. Ozvegy-Laczka, T. Hegedus, G. Varady, O. Ujhelly, J. D. Schuetz, A. Varadi, G. Keri, L. Orfi, K. Nemet, and B. Sarkadi. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 65:1485–1495 (2004). doi:10.1124/mol.65.6.1485.

    Article  PubMed  Google Scholar 

  18. H. Saito, H. Hirano, H. Nakagawa, T. Fukami, K. Oosumi, K. Murakami, H. Kimura, T. Kouchi, M. Konomi, E. Tao, N. Tsujikawa, S. Tarui, M. Nagakura, M. Osumi, and T. Ishikawa. A new strategy of high-speed screening and quantitative structure–activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317:1114–1124 (2006). doi:10.1124/jpet.105.099036.

    Article  PubMed  CAS  Google Scholar 

  19. J. Dancey, and E. A. Sausville. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov. 2:296–313 (2003). doi:10.1038/nrd1066.

    Article  PubMed  CAS  Google Scholar 

  20. P. M. Nurse. Nobel Lecture. Cyclin dependent kinases and cell cycle control. Biosci. Rep. 22:487–499 (2002). doi:10.1023/A:1022017701871.

    Article  PubMed  CAS  Google Scholar 

  21. P. L. Porter, K. E. Malone, P. J. Heagerty, G. M. Alexander, L. A. Gatti, E. J. Firpo, J. R. Daling, and J. M. Roberts. Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat. Med. 3:222–225 (1997). doi:10.1038/nm0297-222.

    Article  PubMed  CAS  Google Scholar 

  22. J. Tsihlias, L. Kapusta, and J. Slingerland. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med. 50:401–423 (1999). doi:10.1146/annurev.med.50.1.401.

    Article  PubMed  CAS  Google Scholar 

  23. A. Tamura, K. Wakabayashi, Y. Onishi, H. Nakagawa, M. Tsuji, Y. Matsuda, and T. Ishikawa. Genetic polymorphisms of human ABC transporter ABCG2: development of the standard method for functional validation of SNPs by using the Flp recombinase system. J. Exp. Ther. Oncol. 6:1–11 (2006).

    PubMed  CAS  Google Scholar 

  24. A. Tamura, K. Wakabayashi, Y. Onishi, M. Takeda, Y. Ikegami, S. Sawada, M. Tsuji, Y. Matsuda, and T. Ishikawa. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Sci. 98:231–239 (2007). doi:10.1111/j.1349-7006.2006.00371.x.

    Article  PubMed  CAS  Google Scholar 

  25. K. Wakabayashi, H. Nakagawa, A. Tamura, S. Koshiba, K. Hoshijima, M. Komada, and T. Ishikawa. Intramolecular disulfide bond is a critical check point determining degradative fates of ATP-binding cassette (ABC) transporter ABCG2 protein. J. Biol. Chem. 282:27841–27846 (2007). doi:10.1074/jbc.C700133200.

    Article  PubMed  CAS  Google Scholar 

  26. M. E. Noble, J. A. Endicott, and L. N. Johnson. Protein kinase inhibitors: insights into drug design from structure. Science. 303:1800–1805 (2004). doi:10.1126/science.1095920.

    Article  PubMed  CAS  Google Scholar 

  27. N. B. Elkind, Z. Szentpetery, A. Apati, C. Ozvegy-Laczka, G. Varady, O. Ujhelly, K. Szabo, L. Homolya, A. Varadi, L. Buday, G. Keri, K. Nemet, and B. Sarkadi. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res. 65:1770–1777 (2005). doi:10.1158/0008-5472.CAN-04-3303.

    Article  PubMed  CAS  Google Scholar 

  28. D. E. MacCallum, J. Melville, S. Frame, K. Watt, S. Anderson, A. Gianella-Borradori, D. P. Lane, and S. R. Green. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res. 65:5399–5407 (2005). doi:10.1158/0008-5472.CAN-05-0233.

    Article  PubMed  CAS  Google Scholar 

  29. H. Saito, H. Hirano, and T. Ishikawa. High-speed screening and quantitative SAR analysis of human ABC transporter ABCG2 for molecular modeling of anticancer drugs to circumvent multidrug resistance. Mini Rev. Med. Chem. 7:1009–1018 (2007). doi:10.2174/138955707782110169.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported, in part, by the NEDO International Joint Research Grant program “International standardization of functional analysis technology for genetic polymorphisms of drug transporters” and research grants (No. 18201041 and No. 19659136) from the Japanese Society for the Promotion of Science (JSPS). Ai Tamura and Hikaru Saito are JSPS Research Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihisa Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, R., Hagiya, Y., Tamura, A. et al. Cellular Phototoxicity Evoked Through the Inhibition of Human ABC Transporter ABCG2 by Cyclin-dependent Kinase Inhibitors In vitro . Pharm Res 26, 449–458 (2009). https://doi.org/10.1007/s11095-008-9738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9738-5

KEY WORDS

Navigation